

VNIVERSIDAD DSALAMANCA

COMPARISON OF SMAP-DERIVED SOIL MOISTURE PRODUCTS FOR NEAR REAL-TIME ROOT-ZONE SOIL MOISTURE ESTIMATION

Ángel_González-Zamora, Nilda Sánchez, José Martínez-Fernández

Instituto Hispano Luso de Investigaciones Agrarias, Universidad de Salamanca, Duero 12, 37185, Salamanca, Villamayor, Spain Author mail: aglezzamora@usal.es

• New end-level L4 products for hydrological and agricultural applications are being developed from recent missions devoted to soil moisture, e.g. SMOS and SMAP.

- The soil moisture observation by remote sensing is made in the first few centimeters, but the root-zone soil moisture estimation is challenging because this soil layer is the reservoir of the plant available water.
- The Soil Water Index (SWI) was successfully used as a proxy of the root-zone soil moisture in several applications.

The objective of this research is to compare the LEVEL 4 Root Zone Soil Moisture product with a proposed, new product using the Level 2 Surface Soil Moisture from SMAP and the Soil Water Index (SWI) as a surrogate of the root-zone soil moisture. The study period spans from March, 31 to December, 31 2015.

SMAP L2_SM_P is soil moisture derived from the radiometer brightness temperature
measurements (Table 1).

Product	Description	Gridding (Resolution)	Latency**	
L1A_Radiometer	Radiometer Data in Time-Order		12 hrs	
L1A_Radar	Radar Data in Time-Order	-	12 hrs	
L1B_TB	Radiometer T _B in Time-Order	(36×47 km)	12 hrs	Instrument D
L1B_S0_LoRes	Low-Resolution Radar σ_{o} in Time-Order	(5×30 km)	12 hrs	Instrument D
L1C_S0_HiRes	High-Resolution Radar σ_o in Half-Orbits	1 km (1−3 km)#	12 hrs	
L1C_TB	Radiometer T _B in Half-Orbits	36 km	12 hrs	
L2_SM_A	Soil Moisture (Radar)	3 km	24 hrs	
L2_SM_P*	Soil Moisture (Radiometer)	36 km	24 hrs	Science Da (Half-Orbit
L2_SM_AP [*]	Soil Moisture (Radar + Radiometer)	9 km	24 hrs	
L3_FT_A*	Freeze/Thaw State (Radar)	3 km	50 hrs	
L3_SM_A	Soil Moisture (Radar)	3 km	50 hrs	Science Da
L3_SM_P*	Soil Moisture (Radiometer)	36 km	50 hrs	(Daily Compo
L3 SM AP*	Soil Moisture (Radar + Radiometer)	9 km	50 hrs	
L4_SM	Soil Moisture (Surface and Root Zone)	9 km	7 days	Science
L4_C	Carbon Net Ecosystem Exchange (NEE)	9 km	14 days	Value-Adde

merges surface observations with estimates from a land surface model in a data assimilation system, including precipitation and a soil moisture vertical transfer model between the surface and root zone reservoirs (Table 1). 8 estimations per day are provided.

 Table 1. SMAP Products and characteristics.

 Using the L2_SM to estimate root zone soil moisture the latency can be improved from 7 days to 24 hours!

- The Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS) is a permanent ground network covering a 1300 km² region in the Northwest of Spain with soil moisture stations measuring at different soil depths (Figure 1).
- L2_SM and L4_SM surface was firstly compared to the ground-measured surface soil moisture (Table 2).

	R	RMSD (m ³ m ⁻³)	cRMSD (m ³ m ⁻³)	BIAS	N
L2 Surface SM	0.69	0.064	0.043	0.047	152
L4 Surface SM	0.54	0.109	0.038	-0.085	2159

Table 2. Results of the comparison between L2 and L4 surface SM (area-averaged) with *in situ* surface measurements

• L4_SM root zone was compared to the ground-measured soil moisture at different depths (Table 3).

	R	RMSD (m³m⁻³)	cRMSD (m ³ m ⁻³)	BIAS	Ν
25 cm	0.44	0.087	0.035	-0.068	2156
50 cm	0.21	0.076	0.035	-0.037	2156
100 cm	-0.22	0.069	0.029	-0.030	2123
0-100 cm	0.43	0.062	0.023	-0.048	2123

Table 3. Results of the comparison between L4 root-zone SM (area-averaged) with *in situ* measurements at different depths

Figure 1. REMEDHUS stations over a Land Cover-Land Uses map.

The best correlation was found for the 25 cm top layer and the profile average. cRMSD is lower than 0.04 m³m⁻³ and bias is negative, indicating overestimation.

The **proposed model** (Wagner et al., 1999; Albergel et al. 2008) relates the instantaneous value of surface moisture to the profile moisture using and exponential smoother filter instead of a linear relation, assuming that the soil moisture content integrated over deeper layers exhibits much smaller variations than in the topmost

$$SWI_{n} = SWI_{(n-1)} + K_{n}(SM(t_{n}) - SWI_{(n-1)})$$

$$K_{n} = \frac{K_{n-1}}{\frac{t_{n} - t_{n-1}}{T}}$$

E10	r	p-value	RMSD	cRMSD	bias	N
25 cm	0.59	0.00	0.052	0.045	0.027	95
50 cm	0.43	0.00	0.252	0.035	0.250	95
100 cm	0.30	0.00	0.221	0.029	0.219	95
Area-Average						
25 cm	0.58	0.00	0.095	0.044	0.073	122
50 cm	0.27	0.00	0.107	0.033	0.088	119
100 cm	-0.34	0.00	0.135	0.032	0.128	121

Table 4. Results of the comparison between L2 SWI-derived with *in situ* measurements at different depths

The proposed root zone soil moiture product L2-based **improves the accuracy** of the original L4_SM wilst diminishing the period of time between the observation acquisition and the possible deliver, owing the **smaller latency** of the L2 product.

$K_{n-1} + e T$

T is a exponential smoother filter representing (in days) the characteristic time length for each type of soil, increasing with the depth of the reservoir and decreasing with the specific-soil diffusivity constant.

Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., Martin, E., 2008. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrology and Earth System Sciences, 12: 1323-1337 Wagner, W., Lemoine, G., Rott, H., 1999. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sensing of Environment, 70(2): 191-207

 Both L4 and L2-derived products have shown an acceptable relationship with ground measurements, but further research is needed when a longer period of data is available.

 The proposed experimental product is a potential root-zone product derived from the original L2_SM as a input and a simple, easy-to-implement model. A challenging scenario of new products is opened from the SMAP family products and applications.

ACKNOWLEDGEMENTS

This study was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (ERDF). (Project ESP2015-67549-C3-3). The authors acknowledge the European Space Agency (ESA) (Project AO-3230) and the National Aeronautics and Space Administration (NASA).

NASA DIRECT READOUT CONFERENCE (NDRC-9) THE 9TH INTERNATIONAL EOS/S-NPP DIRECT READOUT CONFERENCE Valladolid, Spain • June 21 – 24, 2016