

EARS Network – Overview and the New VIIRS Day Night Band Service

Anders Soerensen (EUMETSAT)

EUMETSAT is an intergovernmental organisation with 30 Member States and 1 Cooperating State

EUMETSAT headquarters – Darmstadt, Germany

EUMETSAT SAF network across Europe

EUMETSAT NETWORK OF SATELLITE APPLICATION FACILITIES

NWC SAF

Support to Nowcasting and Very Short Range Forecasting Led by Agencia Estatal de Meteorología, Spain

🗲 OSI SAF

Ocean and Sea Ice Led by Météo France

CM SAF

Climate Monitoring Led by Deutscher Wetterdienst, Germany

NWP SAF

Numerical Weather Prediction Led by Met Office (UK)

🗲 LSA SAF

Land Surface Analysis Led by Portuguese Meteorological Institute

CO3M SAF

Ozone and Atmospheric Chemistry Monitoring Led by Finnish Meteorological Institute

ROM SAF

Radio Occultation Meteorology Led by Danish Meteorological Institute

Support to Operational Hydrology and Water Management Led by Italian Meteorological Institute

Global Mission

Local Mission

Regional Mission

2-6 hours

Immediate

30 minutes

The EARS System

The EARS Ground Station Network

EUMETSAT

Data Segmentation and Selection

EUMETCast User Station

Timeliness 15 Minutes

Past Evolution 2002-2014

EARS – Acquired Passes Per Day

YEARS 1986-2016

Future Evolution 2015-2025

Services

Supported Satellites

Network

VIIRS Instrument Dynamic Range

USA/Canada/Greenland/Iceland - 11 Nov 2015

DMI in Kangerlussuaq is hosting one of the EARS ground stations

Norwegian Meteorological Institute – 25 Jan 2016

Full Moon

Trygve Aspenes, Norwegian Meteorological Institute:

"The main reason for use of the DNB is to have a visual at night. For example low clouds/fog, it is difficult to see the difference in the brightness temperature of low clouds and ground. The DNB can help the forecasters to see this..."

RGB (DNB, DNB, -M15) M15 = 10.8 μm

Norwegian Meteorological Institute – 25 Jan 2016

Trygve Aspenes, Norwegian Meteorological Institute:

".... But at new moon it is difficult to get any meteorological information."

Northern Lights

New Moon

RGB (DNB, DNB, -M15) M15 = 10.8 μm

Norwegian Meteorological Institute – 18 Feb 2016 IR Channel M15

Trygve Aspenes, Norwegian Meteorological Institute:

"The distinction between cloud and surface can be difficult in the IR channel alone..."

Norwegian Meteorological Institute – 18 Feb 2016 Day/Night Band + IR Channel M15

Trygve Aspenes, Norwegian Meteorological Institute:

"...but adding the Day/Night band makes the boundaries clearer."

RGB (DNB, DNB, -M15) M15 = 10.8 μm

Swedish Meteorological and Hydrological Institute Ice Charting Application

Adam Dybbroe, Swedish Meteorological and Hydrological Institute :

"The SMHI Ice Charting Group is currently a regular user of VIIRS Day/Night Band images"

Data acquired locally by SMHI

RGB (DNB, DNB, -M15) M15 = 10.8 μm

Swedish Meteorological and Hydrological Institute Developing RGB Encodings

Adam Dybbroe, Swedish Meteorological and Hydrological Institute :

"SMHI is experimenting with RGB encodings of DNB. In this image the thin/semitransparent clouds, typically high cirrus, appear blue. Low clouds and fog appear with less or no blue.

Proposals for alternatives welcome!"

Data acquired locally by SMHI

RGB (DNB, -M15, M12-M16) M12 = 3.7 μm M15 = 10.7 μm M16 = 12.0 μm

Svalbard at Night – 28 October 2015

Thank you for you attention!