Play Ku

Puor

Qui Nhon

BO

Nha

Darimouth

Flood Observatory

Trang

Cam Ranh

Global Near Real-Time MODIS-based Flood Mapping: Upcoming Improvements and Transition to LANCE

NDRC Webinar

1 April 2020

Dan Slayback

Science Systems & Applications, Inc Biospheric Sciences Laboratory NASA Goddard Space Flight Center dan.slayback@nasa.gov

PI: Fritz Policelli, NASA GSFC Hydrology Lab Co-Is: Bob Brakenridge, Albert Kettner: Dartmouth Flood Observatory, University of Colorado

Nakhon Sawan

Chapt

Bangkok

Goddard Space Flight Center

Bien

Ho Chi Hoa

Indus Flooding Sept 2014

Mississippi river flooding – May 2013

Selection of end users

A brief history

- Early 2000s: Bob Brakenridge (Dartmouth Flood Observatory): manual generation of flood maps using MODIS rapid response imagery as source
- Generally effective, but:
 - Not automated!
 - Used rapid response jpegs not intended for data analysis
- ~ 2010, NASA GSFC's Office of Applied Science initiated a project to automate production
 - Using LANCE-generated NRT surface reflectance
 - Automated global flood map production began 2012:
 - 223 10x10° tiles x 3 products (2-day, 3-day, 14-day) = 669 daily product suites generated.
 - Typically available within 6 hours of Aqua overpass (~ 8:00 PM local time).
 - Now transitioning full production into LANCE

Current Status

- LANCE transition nearly complete....mid 2020?
 - Has required a complete rewrite of code running on PI-owned server: from a combination of IDL/ENVI, python, and perl, to perl and PDL (Perl Data Language).
 - Code architecture updated and simplified, but requires some new approaches to production rules in LANCE/MODAPS for the multi-day compositing.

- Other benefits to LANCE transition
 - Reduced latency of product generation; can process as soon as incoming granules are available. (previously scheduled at ~8pm local time).
 - Add needed improvements: updated reference water, "recurring flood", improved masking
 - Product browseable within ESDIS/Worldview interface much more powerful end-user experience
 - Possible back-processing of MODIS archive, providing ~20 year history of earth surface water dynamics at 250m resolution

Approach: two key steps

* Depends on cloud cover at site of interest

Approach: in more detail

- 1. Water Detection
 - Apply algorithm to all incoming MOD09 (surface reflectance) swath data granules
- 2. Multi-look compositing
 - Require multiple water observations to mark a pixel as water (generally)
- 3. False-positive masking
 - Remove likely cloud-shadow and terrain-shadow false positives
- 4. Determination of flood
 - Compare detected water to reference of permanent water (lakes, rivers), and to recurring flood areas, to provide a product showing:
 - 1. Surface water (= expected water)
 - 2. ***NEW in LANCE*** Recurring flood (= flood occurring in areas where frequently previously detected)
 - 3. Flood (= flood occurring in areas where not frequently previously detected)
 - 4. Insufficient data (clouds, NODATA, etc) (= potential false negatives)

Multi-look compositing example

SE Asia Floods 2011

Tile: 100E020N Dates: 1-2 Nov 2011 Composite: 2D2O = 2-day 2-obs.

Input MOD09 721 Water Detection

1. Water Detection: Input data

LANCE NRT MODIS Surface Reflectance product (MOD09):

- Daily Terra and Aqua SR bands 1, 2 (250 m) and band 7 (sharpened to 250 m)
 - Used in core water detection algorithm.
- Cloud mask flag (from MOD09 QA State Layer)
 - Informs when we cannot see the surface; NODATA (really: no SURFACE data)
 - Pre-LANCE: used MOD35 cloud product
- Cloud shadow flag (from MOD09 QA State layer)
 - Assists with removal of cloud-shadow false-positives.
 - Pre-LANCE: used MOD06 / Atmosphere and geometrically projected clouds from MOD35

2. Multi-look compositing

- 2-day standard product (2D2O): Requires 2 water observations over 2 days (potentially 4 observations).
- 3-day product (3D3O): Requires 3 water obs over 3 days. Minimal false-positives. Potentially less current.
- 1-day product (1D1O): Requires JUST 1 observation over 1 day.
 - Most current, but WILL contain cloud-shadow false-positives IF cloud is present.
- Which to use? It depends on cloud conditions, and:
 - Tolerance for false positives (and false negatives).
 - Need for only the most up-to-date information.
- Clear conditions? (Can verify visually in Worldview app: <u>https://worldview.earthdata.nasa.gov/</u>) Use 1-day.
- Very sensitive to false-positives and/or currency is not critical? Use 3-day.
- Need the latest info? Use 1-day, but you MUST check cloud cover!
- Best approach? Review all products, check cloud cover, and evaluate for given event and needs.

Impact of composite period:

1-day product

Houston-area flooding June 2016

Impact of composite period:

2-day product

Less flood shown \rightarrow cloud preventing multiple water observations

Impact of composite period:

3-day product

Even less flood shown \rightarrow not helpful

Impact of composite period

Cloud-shadow removal: 2 vs 3-day product

 \rightarrow 3-day is better

3-day product removes cloud shadow false-positives persisting in 2-day product

Impact of composite period

Cloud-shadow removal: 2 vs 3-day product

 \rightarrow 2-day is better

2-day shows better coverage of flood zone;3-day patchy due to cloudiness

3. False-positive masking

- Shadows look like water!
- Terrain shadows
 - In mountainous areas, mostly in winter
 - To filter, we use pre-computed shadows (good but not perfect)
 - New apply HAND topographic mask
- Cloud shadows
 - Multi-look compositing mostly eliminates
 - For 1-day, we apply the cloud shadow mask included in MOD09 product
 - Imperfect, but helpful

Terrain Shadow Masking Example: Alps – imagery basemap

Terra MOD09 721 (Clouds + snow)

2000

Lake Geneva

Terra MOD09 721 + Water detections

Cloud shadows

Terrain shadows

<mark>ke Geneva</mark>

Real water

Aqua MOD09 721 🎽

Aqua MOD09 721 + Water detections

14.

Aqua MOD09 721

- + Composited 2-day water detections
- \rightarrow Terrain shadows: persist
- → Cloud shadows: *mostly* disappear

ake G

58 km

Basemap background
+ Composited 2-day water detections
→ lots of terrain shadow

145

Lake Ge

Basemap background

- + Composited 2-day water detections
- + Terrain shadow masks
- → Much less terrain shadow (but some!)

HAND mask:

Height Above Nearest Drainage

Basemap background

+ Composited 2-day water detections

Lake Geneva

+ Terrain shadow mask

Basemap background

+ Composited 2-day water detections

- + Terrain shadow mask
- + HAND mask

Cloud Shadow Removal Example:

Aqua MOD09 721

Aqua MOD09 721 + Water detections

14.

Aqua MOD09 721

- + Water detections (yellow)
- + Cloud shadow mask for Aqua (purple)
- \rightarrow Much (not all) cloud shadow removed
4. Determination of "flood"

- Compare detected to "reference water" = expected water
- Pre-LANCE: MOD44W static global water product
- LANCE: plan to generate our own from the flood product
 - Can be more easily updated to reflect real surface water changes
 - Pending backprocessing (after LANCE NRT processing operational)
 - Interim: use our existing reference water (original MOD44W)
- New Feature: "Recurring flood"
 - Using product archive, can identify regions with regular flooding
 - Will be marked differently in flood product: "recurring flood"

Example: (Cambodia)

Applied to Oct 2013 flood product Differentiates:

- Recurring flood (orange)
- Flood (red)

⁽¹¹⁻Oct-2013, 2-day product)

LANCE Improvements: ESDIS/Worldview browsing

https://worldview.earthdata.nasa.gov

- Seamless browsing across 10x10 degree product tiles
- Easily follow flood progression over time
- Compare to past events
- Check optical imagery for clouds ("Can I use the 1-day product?")
 - Need to check *all* contributing imagery (Terra + Aqua over 1, 2, or 3 days)
 - \rightarrow Not difficult in Worldview

LANCE: Product changes

- Operating on swath granules vs pre-mosaicked tiles
 - Better cloud-shadow screening on 1-day products
 - Lower latency product delivery (as soon as Aqua data available)
 - 10 x 10 degree product tile updates as new swath granules available
- Adding "recurring flood"
- Adding global generation of 1-day product
- Discontinuing generation of 14-day product
- Distribution format changes
- Distribution website change

Changes in output data values

	Pre-LANCE	LANCE
Insufficient data	0	255
No water detected	1	0
Permanent water	2	1
Recurring flood	NA	2
Flood	3	3

Changes in output format

- Pre-LANCE current product
 - 1 geotiff file for each 1-day, 2-day, and 3-day product (per 10 ° x 10° tile)
 - Previously: shapefile and KMZ (Google Earth) formats
- LANCE product
 - 1 HDF file per tile per day, containing all products (1-day, 2-day, and 3-day)
 - No vector products planned
 - Possibly geotiffs
 - Raw water detections per swath granule available as Level-2 product

Changes in delivery

- Pre-LANCE (current)
 - Website with clickable map and reduced-resolution graphic previews
 - No easy method to download many files

- LANCE
 - Worldview browsable map
 - Standard LANCE NRT access:
 - https://nrt3.modaps.eosdis.nasa.gov

Validation

- Purpose:
 - Is water detection algorithm correctly detecting water that is visibly obvious? Are certain situations problematic?
 - Do we see differences between detection of flood vs normal water?
- Method:
 - Manual qualitative assessment, using raw MODIS or Landsat imagery to inform.
 - Ground truth is difficult to find, expensive to collect, and generally biased towards accessible locations.
 - Flood events selected from DFO master list of recent floods
 - Global distribution.
 - Including areas with high and low cloud cover (humid tropics to arid regions).
 - Varying landcovers.

Flood Detection Ratings

RATING	Count	%	
5-almost perfect	11	21	1
4-excellent	10	19	66% of clear
3-good	2	4	1
2-fair	1	2	
1-poor	11	21	
TMC - too many clouds	17	33	
TOTAL	53	100	

Permanent Water Detection Ratings

RATING	Count	%	
5-almost perfect	15	28	1
4-excellent	9	17	- 84%
3-good	7	13	7
2-fair	2	4	
1-poor	4	8	
TMC - too many clouds	16	30	•
TOTAL	54	100	

of clear

Correct flood and permanent water identification

Brazil: 02 January 2014

Base map

Landsat 8 Pre-flood Apr 21, 2013

Landsat 8 Flood Jan 2, 2014

MODIS NRT product Jan 3, 2014

Correct flood identification

Sava river / Bosnia and Herzegovina: 23 May 2014

Correct flood identification

Mississippi (KY/IN/IL): 04 Jan 2014

Barren rock / volcanic false positives

Mauna Loa, Hawaii: 17 Dec 2013

MODIS NRT Product

Landsat 8

MODIS (MCD12Q1) IGBP Land Cover

MODIS IGBP Land Cover with flood water

Flood detection limitations

- Cloudiness
- Flood spatial extent
 - 250 m pixels
- Flood temporal extent
 - Flash floods / short duration on ground
- Landcover
 - Water under tree cover
 - Urban
 - Exposed volcanic rock

Future directions

- Backprocessing archive
 - Nearly 20-year history of large-scale surface water dynamics for much of globe!
- Add VIIRS
 - Only afternoon, but adds additional observations, removes swath gaps
 - Somewhat lower resolution (375 vs 250 m)
 - Will become critical when Aqua fails
- Improve terrain shadow masking
- Alert system

Potential Direct Readout Opportunities

- Use our products, customize for local case
 - Customized permanent and seasonal water layers to identify flood
 - Potentially have staff available to evaluate best product per event, and incorporate local maps and knowledge
- Generate products directly
 - Latency
 - Reduced further with direct broadcast.
 - Customize water detection algorithms
 - Optimize for local conditions / landcover

