
Real-time Software
Telemetry Processing

System (RT-STPS)
User's Guide

Version 5.6

May 2014

 GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

RT-STPS Version 5.6 Page i May 2014

Table of Contents

1 General .. 1

2 Software Description .. 1
3 Software Version .. 2
4 Prerequisites .. 3
5 Program Inputs and Outputs .. 3
6 Installation and Configuration ... 3

6.1 Linux Platform Installation .. 3
6.1.1 Requirements .. 4
6.1.2 leapsec File Configuration ... 4
6.1.3 Installation ... 4

6.1.4 Configure RT-STPS ... 5
6.1.5 Package Layout ... 6

6.1.6 Testing the Installation ... 6
6.1.6.1 Start the Server Manually ... 6
6.1.6.2 Execute the Viewer ... 7

6.1.6.3 Execute the Sender .. 8
6.1.6.4 Inspect the Results ... 8

6.1.6.5 Stop the Server ... 9
6.1.7 Creating Launchers ... 9
6.1.8 Firewall Configuration .. 9

6.2 Windows Platform Installation .. 9
6.2.1 Requirements .. 10

6.2.2 leapsec File Configuration ... 10

6.2.3 Installation ... 10

6.2.4 Configure RT-STPS ... 11
6.2.5 Package Layout ... 11

6.2.6 Testing the Installation ... 12
6.2.6.1 Start the Server Manually ... 12
6.2.6.2 Execute the Viewer ... 12

6.2.6.3 Execute the Sender .. 13
6.2.6.4 Inspect the Results ... 14

6.2.6.5 Stop the Server ... 15
6.2.7 Creating Shortcuts ... 15
6.2.8 Firewall Configuration .. 15

6.3 Java Setup and Performance Notes .. 15

7 Program Operation ... 15
7.1 Starting the Server ... 16

7.1.1 Command Line Script .. 16

7.1.2 Java Service Wrapper (Linux Only) ... 16
7.2 Viewer .. 17

7.2.1 Viewer Function Summary ... 17
7.2.1.1 Menu Bar .. 17
7.2.1.2 File Menu .. 17

RT-STPS Version 5.6 Page ii May 2014

7.2.1.3 Commands Menu .. 17

7.2.1.4 Status Menu .. 18
7.2.1.5 Button Bar ... 18

7.3 Sender ... 18
7.4 Batch Mode .. 18
7.5 Logging .. 19
7.6 Stopping the Server ... 19

7.6.1 Command Line Script .. 19

7.6.2 Java Service Wrapper (Linux Only) ... 20
7.7 Rebuilding .. 20

8 Raw Data Record (RDR) Creation ... 21
8.1 Supported RDRs .. 21
8.2 Test Data ... 21

8.3 Suomi NPP Configuration File for RDRs .. 21
8.4 Processing the Test Data ... 22

8.5 RDR Processing Status ... 22

8.6 Expected Output .. 22
8.7 Reference Sources .. 22

9 Additional Command Line Tools .. 23

9.1 Getstatus .. 23
9.2 Load ... 23

9.3 Shutdown ... 23
9.4 Version ... 24
9.5 Rate Buffering Program ... 24

10 Additional Server Configuration Options .. 26
10.1 Configuring the Log ... 27

10.2 Automatic Setup.. 27
10.3 Adding a Second Server ... 27

10.4 Provided Configuration Files ... 28
11 Alternate Server Interface .. 28
12 Understanding the Configuration Files ... 29

12.1 Frame Synchronizer Element ... 29
12.2 Cyclic Redundancy Check (CRC) Decoder Element 32

12.3 Reed-Solomon Decoder Element ... 33
12.4 Spacecrafts ... 34
12.5 Terra Decoder Element ... 34

12.6 CADU Service Element ... 35
12.7 CCSDS Services Element .. 35

12.7.1 VCDU Service Element .. 35
12.7.2 Bitstream Service Element ... 36

12.7.3 Path Service Element ... 37
12.8 Packets Element ... 39
12.9 Output Channels Element ... 41

12.9.1 File Output Channel Element ... 41
12.9.2 Annotation .. 42
12.9.3 Socket Output Channel Element .. 43

RT-STPS Version 5.6 Page iii May 2014

12.9.3.1 Sorcerer Output Channel Element .. 45

12.9.3.2 Application ID Sub-element ... 46
12.9.3.3 Packet Length Sub-element .. 47

12.9.4 RDR Output Element .. 47
12.9.4.1 Packet List .. 48
12.9.4.2 Supported Application Identifiers .. 48

12.10 Links Element ... 49

Table 1. frame_sync Element ... 30
Table 2. crc Element .. 32
Table 3. reed_solomon Element .. 33
Table 4. spacecrafts Element ... 34
Table 5. cadu_service Element .. 35

Table 6. vcdu Element .. 36
Table 7. bitstream Element .. 37

Table 8. path Element .. 38

Table 9. pklink Element .. 39
Table 10. packets Element ... 40
Table 11. file Element ... 41

Table 12. Packet Annotation .. 42
Table 13. Frame Annotation ... 42

Table 14. socket Element ... 44
Table 15. sorcerer Element .. 45
Table 16. appidSub-element .. 46

Table 17. packetLengthSub-element.. 47
Table 18. RDR Element ... 48

Table 19. Supported Application Identifiers .. 48
Table 20. Supported Application Identifiers by RDR .. 49

Table 21. links Element .. 49
Table 22. Predefined Labels .. 49

Figure 1. RT-STPS Architecture ... 2
Figure 2. RT-STPS Viewer ... 7

Figure 3. RT-STPS Sender .. 8
Figure 4. RT-STPS Viewer ... 13
Figure 5. RT-STPS Sender .. 14

Figure 6. RDR Creation Process .. 21

RT-STPS Version 5.6 Page 1 May 2014

1 General

The NASA Goddard Space Flight Center's (GSFC) Direct Readout Laboratory (DRL),
Code 606.3 developed the Real-time Software Telemetry Processing System (RT-
STPS) software for the International Polar Orbiter Processing Package (IPOPP).

Users must agree to all terms and conditions in the Software Usage Agreement on the
DRL Web Portal before downloading this software.

Software and documentation published on the DRL Web Portal may occasionally be
updated or modified. The most current versions of DRL software are available at the
DRL Web Portal:

http://directreadout.sci.gsfc.nasa.gov

Questions relating to the contents or status of this software and its documentation
should be addressed to the DRL via the Contact DRL mechanism at the DRL Web
Portal:

http://directreadout.sci.gsfc.nasa.gov/?id=dspContent&cid=66

2 Software Description

RT-STPS ingests raw telemetry data and produces products, including sorted
Consultative Committee for Space Data Systems (CCSDS) packets and Virtual Channel
Data Units (VCDUs). RT-STPS functions in two modes: Standalone, or as an IPOPP
plug-in (Linux only), and it supports a variety of output formats.

Installed as a server RT-STPS will operate continuously, receiving data from a port or a
file and outputting results to files and sockets as specified in a configuration file. A
separate interface can be used to invoke RT-STPS from the command line.

The RT-STPS package includes two main utilities: the viewer and the sender. The
viewer displays the progress of the server as it runs, and it can be used to load server
configuration files. The sender copies a raw data file to the server for processing.

The RT-STPS architecture is depicted in Figure 1. Each server component performs a
typical part of the overall CCSDS processing from raw telemetry frames to packets.

http://directreadout.sci.gsfc.nasa.gov/
http://directreadout.sci.gsfc.nasa.gov/?id=dspContent&cid=66

RT-STPS Version 5.6 Page 2 May 2014

Raw

Telemetry
PacketsB_PDUsVCDUsCADUsFrames

Frame

Synchronizer

RS/CRC/PN

Decoders

CCSDS

Services
Network

Ports

Server

Core

Acquisition

(TCP or File)

Editor WebViewerSetup

Files

Status Setup Status
Remote User Interfaces

Files

Figure 1. RT-STPS Architecture

3 Software Version

This software package contains RT-STPS Version 5.6. Copyright 1999-2007, United
States Government as represented by the Administrator for the National Aeronautics
and Space Administration. All Rights Reserved.

Enhancements to Version 5.6 include:

 improved HDF5 resource management;

 updated Linux Java Service Wrapper (JSW) when RT-STPS is implemented as a
system service;

 improved Reed-Solomon capability for interleave depths 1, 2, 3, and 5;

 improved packaging for multi-platform use.

RT-STPS Version 5.6 Page 3 May 2014

4 Prerequisites

To run this package, you must have Java Development Kit (JDK) (Java 1.6.0_25 or
higher) installed on your computer. The JDK is required by some scripts which use the
server version of the Java Virtual Machine (JVM), and it is necessary if the RT-STPS
distribution will be rebuilt. The bin directory of the JDK must be added to the beginning
of the PATH environment variable. Placing the bin directory at the beginning of the
PATH environment variable ensures use of the correct Java version rather than the
system default.

5 Program Inputs and Outputs

RT-STPS ingests raw CCSDS-compliant frames that may be Pseudo-noise (PN)-
encoded or Reed-Solomon (RS)-encoded and outputs VCDUs or packets into the
following formats:

a) RDR files: SNPP Visible Infrared Imaging Radiometer Suite (VIIRS), Advanced
Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS),
and Ozone Mapping Profiler Suite (OMPS);

b) Production Data Set (PDS) (packet file and Construction Record [CSR]) file pairs;

c) File: header, trailer, and no annotation;

d) Sockets.

6 Installation and Configuration

RT-STPS can be installed on Linux or Microsoft Windows platforms. Installation and
configuration instructions for each platform are provided in separate sections: for Linux
refer to section 6.1, and for Windows refer to section 6.2. Program operation
instructions for both Linux and Windows installations are contained in section 7.

The RT-STPS_5.6_testdata.tar.gz (.zip for Windows) file contains a sample Suomi NPP
raw input data file ("rt-stps_npp_testdata.dat") that may be processed with RT-STPS to
test RT-STPS following installation and configuration. Instructions are contained in
section 6.1.6 (Linux) and section 6.2.6 (Windows). The "rt-stps_npp_testdata.dat" file
will produce RDRs for the Suomi NPP VIIRS, ATMS, CrIS, and OMPS instruments.
Refer to section 8 for additional information.

6.1 Linux Platform Installation

RT-STPS may be installed in two modes of operation on Linux: Standalone or as an
IPOPP plug-in. In either case, RT-STPS should be installed into a 'drl' directory such as
'/home/drl'.

When installing RT-STPS on a computer where IPOPP has been installed previously,
be sure to install RT-STPS in the existing 'drl' directory so it may configure itself
properly. Before doing so copy any customized configuration files from the previous
installation to a safe location so they will not accidently be overwritten during
installation.

RT-STPS Version 5.6 Page 4 May 2014

If you are upgrading from a previous version of RT-STPS, first stop the RT-STPS
services, then delete the existing 'rt-stps' directory.

6.1.1 Requirements

RT-STPS requires the Sun/Oracle JDK Java 1.6.0_25 or higher. Download and install
the JDK for Linux according to the Oracle/Sun instructions.

The RT-STPS package comes pre-compiled using a Java 1.6 64-bit JDK. A 64-bit
version of Linux is required for proper operation.

The bin directory of the JDK must be added to the beginning of the PATH environment
variable. Placing the bin directory at the beginning of the PATH environment variable
ensures use of the correct Java version rather than the system default. Refer to section
6.3 for more details regarding Java requirements.

RT-STPS has been tested with the following Linux distributions:

a) Fedora 18 X86_64;

b) CentOS Linux 6.4 X86_64;

c) OpenSUSE Linux 12.1 X86_64;

d) Kubuntu 13.04 X86_64

6.1.2 leapsec File Configuration

RT-STPS requires a leapsec file to calculate the current number of leap seconds to use
in time calculations. An up-to-date leapsec file is required for RT-STPS operation. A
leapsec file is included in the RT-STPS software package. For correct time calculations,
please ensure that an up-to-date leapsec.dat file is located in the root directory of RT-
STPS. Leapsec files are available at:

ftp://is.sci.gsfc.nasa.gov/ancillary/temporal/

The leapsec filename must follow one of the two following formats:

a) leapsec.dat

b) leapsec.YYYYMMDDNN.dat, e.g. leapsec.2013042201.dat

6.1.3 Installation

NOTE: These installation instructions assume that the RT-STPS package will be
installed in '/home/drl'.

If the RT-STPS is currently running, stop it by executing the following from the
command line:

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./jsw/bin/rt-stps-server.sh stop

RT-STPS Version 5.6 Page 5 May 2014

If installing RT-STPS on a computer where RT-STPS has been installed previously, first
save any customized configuration files to another location before removing the existing
'rt-stps' directory.

Then to install the new package:

1) create a user account (if it does not already exist) under which the server will run;

2) make a 'drl' subdirectory in which the RT-STPS will be installed;

3) copy the downloaded RT-STPS_5.6.tar.gz file to the 'drl' directory;

4) decompress RT-STPS_5.6.tar.gz using the command:

$ tar xzvf RT-STPS_5.6.tar.gz

An 'rt-stps' directory containing the contents of the RT-STPS package should now be
installed in the 'drl' directory. The RT-STPS user must own and have full read/write
permissions to the 'drl' and 'rt-stps' directories. Copy any saved configuration files to the
new package location as is appropriate for your system.

Copy the downloaded RT-STPS_5.6_testdata.tar.gz file to the 'rt-stps' directory.
Decompress and un-archive the RT-STPS_5.6_testdata.tar.gz file:

$ tar –xzf RT-STPS_5.6_testdata.tar.gz

6.1.4 Configure RT-STPS

Change to the 'drl/rt-stps' directory and run the installation script:

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./install.sh

In order to make the script executable, it may be necessary to run the command:

chmod +x install.sh

The script looks for a previous installation of IPOPP; if it finds one, it will assume that
RT-STPS is being installed in IPOPP Mode and the following message will appear:

Configuring RT-STPS for IPOPP Mode.

If IPOPP software has not been installed previously, then the user will receive the
following message:

Configuring RT-STPS for Standalone Mode.

RT-STPS Version 5.6 Page 6 May 2014

In either case when configuration is complete, the user will receive the following
message:

Configuration complete.

This message indicates that an RT-STPS package has been installed and configured
successfully.

6.1.5 Package Layout

Once the package has been unpacked and installed, the 'rt-stps' directory should
contain the following contents:

- bin/ – command line applications
- classes/ – compiled java classes directory
- config/ – XML configuration files
- data/ – telemetry data input
- docs/ – javadoc target directory
- images/ – various icon and graphic images
- jsw/ – Java Service Wrapper software for Linux
- lib/ – jar files including rt-stps.jar and HDF libraries
- src/ – source tree
- testdata/ – contains the "rt-stps_npp_testdata.dat" file and test output products
- build.sh – Linux build script
- build_javadoc.sh – Linux build javadoc script
- install.sh – installation script for Linux
- leapsec.dat – leapsec file used for accurate time calculations
- rt-stps.dtd – the Data Type Definition (DTD) for the XML configuration files
- rt-stps.policy – policy statement
- SUA Open Source IPOPP GSC-15570-1.pdf – software use agreement
- VERSIONLOG – version info

6.1.6 Testing the Installation

The server places its home directory as the 'rt-stps' directory, and the configuration files
specify that output will go to the '../data' directory. RT-STPS places output into the 'data'
directory at the same level as the 'rt-stps' directory (i.e., 'rt-stps/../data').

After testing the installation the user may wish to edit the configuration files to specify a
preferred destination directory. Refer to section 12.9.

6.1.6.1 Start the Server Manually

To test the installation the server must be started from the command line. Ensure that
you are in the 'rt-stps' directory and then start the server by issuing the start command
to the JSW (Java Service Wrapper):

/home> cd /home/drl/rt-stps

RT-STPS Version 5.6 Page 7 May 2014

/home/drl/rt-stps> ./jsw/bin/rt-stps-server.sh start

The JSW captures all output messages to a log file in 'rt-stps/jsw/logs'. The overall
status of the server can also be checked by issuing the status command to the JSW:

/home/drl/rt-stps> ./jsw/bin/rt-stps-server.sh status

This command will return its current process identifier and a message confirming it is
running.

6.1.6.2 Execute the Viewer

Next start the viewer application. The viewer allows the user to load configuration files
and to view processing status. From the command line in the 'rt-stps' directory enter:

/home/drl/rt-stps> ./bin/viewer.sh &

This command will bring up the viewer Graphical User Interface (GUI), depicted in
Figure 2. Use the Load button to load the "npp_with_omps.xml" configuration file from
the 'rt-stps/config' directory. Use the file dialog to find this directory and file. Once the
file loads, click on the Go button.

Figure 2. RT-STPS Viewer

RT-STPS Version 5.6 Page 8 May 2014

6.1.6.3 Execute the Sender

Next start the sender application. The sender allows the user to send telemetry data
files to the RT-STPS server for processing. It also displays the percentage of the file
that has been sent to the server. From the command line in the 'rt-stps' directory, enter:

/home/drl/rt-stps> ./bin/sender.sh &

This will bring up the sender GUI and place the command into the background.

Click on the File button. Use the File dialog to select the "rt-stps_npp_testdata.dat" file
from the 'testdata/input' directory extracted from the RT-STPS_5.6_testdata.tar.gz file,
and click on the Go button to send the file to the server for processing. The sender is
depicted in Figure 3.

Figure 3. RT-STPS Sender

6.1.6.4 Inspect the Results

Once processing is complete (the viewer status buttons will show that no more data are
being processed, and the sender will show that it is done), list and inspect the contents
of the 'rt-stps/../data' directory. It should contain RDR files with the following filenames
(the dates of the creation fields that start with a 'c' will be different):

RATMS-RNSCA_npp_d20120529_t1657471_e1702031_b00001_c20140502204548171000 _all-_dev.h5

RCRIS-RNSCA_npp_d20120529_t1657471_e1702031_b00001_c20140502204547471000 _all-_dev.h5

RNSCA-ROLPS_npp_d20120529_t1657344_e1702338_b00001_c20140502204548284000 _all-_dev.h5

file:///F:/RT-STPS/Downloads/newtestdata.png

RT-STPS Version 5.6 Page 9 May 2014

RNSCA-RONPS_npp_d20120529_t1657424_e1701268_b00001_c20140502204548311000_all-_dev.h5

RNSCA-ROTCS_npp_d20120529_t1657424_e1702042_b00001_c20140502204548297000_all-_dev.h5

RNSCA-RVIRS_npp_d20120529_t1656471_e1702285_b00001_c20140502204546826000_all-_dev.h5

Test output products are available in the 'rt-stps/testdata/output' directory. The test
output products serve as an indicator of expected program output. Use a comparison
utility (such as diff, h5diff, etc.) to compare your output products to those provided in the
'rt-stps/testdata/output' directory. Locally generated products may differ slightly from the
provided test output products because of differences in machine architecture or
operating systems.

6.1.6.5 Stop the Server

Once the test is complete the server may be stopped by issuing the stop command to
the JSW:

/home/drl/rt-stps> ./jsw/bin/rt-stps-server.sh stop

WARNING: Since the viewer/sender requires the RT-STPS server to be running, it is
advised that the sender and viewer be closed prior to stopping the server.

6.1.7 Creating Launchers

Desktop launchers to run the viewer and sender may be created to start these
applications. The creation of launchers varies between the different types of Linux
distributions and their desktop environments. In all cases the commands described in
section 6.1.6.2 and section 6.1.6.3 will apply.

6.1.8 Firewall Configuration

A firewall may in some cases prevent RT-STPS from running correctly, and it may need
to be disabled or configured to allow access for certain ports. The server accepts data
by default on port 4935. The output port numbers, if any, are defined in the configuration
files. The viewer initially connects through port 1099; afterwards, the viewer and server
communicate through anonymous ports.

6.2 Windows Platform Installation

RT-STPS will be installed in Standalone mode on Windows.

When installing RT-STPS on a computer where RT-STPS has been installed previously,
copy any customized configuration files from the previous installation to a safe location
so they will not accidentally be overwritten during installation.

If you are upgrading from a previous version of RT-STPS, first stop the RT-STPS
services, then delete the existing 'rt-stps' directory.

RT-STPS Version 5.6 Page 10 May 2014

NOTE: This version of RT-STPS for Windows does not support the JSW (Java Service
Wrapper).

6.2.1 Requirements

RT-STPS requires the Sun/Oracle JDK Java 1.6.0_25 or higher. Download and install
the JDK for Windows according to the Oracle/Sun instructions. The RT-STPS package
is pre-compiled using the Java 1.6.0_25 64-bit JDK with HDF 64-bit.

The 'bin' directory of the JDK must be added to the beginning of the PATH environment
variable so that the proper version Java executable is used. The easiest way to set the
PATH is to use the System Properties dialogue. Refer to section 6.3 for more details
regarding Java requirements.

RT-STPS has been tested with Microsoft Windows 7 64-bit.

6.2.2 leapsec File Configuration

RT-STPS requires a leapsec file to calculate the current number of leap seconds to use
in time calculations. An up-to-date leapsec file is required for RT-STPS operation. A
leapsec file is included in the RT-STPS software package. For correct time calculations,
please ensure that an up-to-date leapsec.dat file is located in the root directory of RT-
STPS. Leapsec files are available at:

ftp://is.sci.gsfc.nasa.gov/ancillary/temporal/

The leapsec filename must follow one of the two following formats:

a) leapsec.dat

b) leapsec.YYYYMMDDNN.dat, e.g. leapsec.2013042201.dat

6.2.3 Installation

NOTE: These installation instructions assume that the RT-STPS package has been
installed in 'C:\Users\drl'.

If RT-STPS is currently running, stop it by executing the command:

C:\Users> cd C:\Users\drl\rt-stps\bin
C:\Users\drl\rt-stps\bin> stop.bat

If installing RT-STPS on a system where RT-STPS has been installed previously, first
save any customized configuration files to another location before removing the existing
'rt-stps' directory.

Then to install the new package:

1) create a user account (if it does not already exist) under which the server will run;

RT-STPS Version 5.6 Page 11 May 2014

2) make a 'drl' subdirectory in which the RT-STPS will be installed;

3) copy the downloaded RT-STPS_5.6.zip file to the 'drl' directory;

4) decompress the RT-STPS_5.6.zip file directly into the 'drl' directory.

An 'rt-stps' directory containing the contents of the RT-STPS package should now be
installed in the 'drl' directory. The RT-STPS user must own and have full read/write
permissions to the 'drl' and 'rt-stps' directories. Copy any saved configuration files to the
new package location as is appropriate for your system.

Copy the downloaded RT-STPS_5.6_testdata.zip file to the 'drl' directory. Decompress
and un-archive the RT-STPS_5.6_testdata.zip file directly into the 'drl' directory; if asked
to merge directory contents with the existing 'rt-stps' directory, select "Yes".

6.2.4 Configure RT-STPS

Change to the 'drl\rt-stps' directory and run the installation script:

C:\Users\> cd C:\Users\drl\rt-stps
C:\Users\drl\rt-stps> install.bat

The user will receive the following message:

Configuring RT-STPS for Standalone Mode.

When configuration is complete, the user will receive the following message:

Configuration complete.

These messages indicate that an RT-STPS package has been installed and configured
successfully.

6.2.5 Package Layout

Once the package has been unpacked and installed, the 'rt-stps' directory should
contain the following contents:

- bin\ – command line applications
- classes\ – compiled java classes directory
- config\ – XML configuration files
- data\ – telemetry data input
- docs\ – javadoc target directory
- images\ – various icon and graphic images
- lib\ – jar files including rt-stps.jar and HDF libraries
- logs\ – location of RT-STPS server log files
- src\ – source tree
- testdata\ – contains the "rt-stps_npp_testdata.dat" file and test output products

RT-STPS Version 5.6 Page 12 May 2014

- build.bat – Windows build script
- build_javadoc.bat – Windows build javadoc script
- install.bat – installation script for Windows
- leapsec.dat – leapsec file used for accurate time calculations
- rt-stps.dtd – the Data Type Definition (DTD) for the XML configuration files
- rt-stps.policy – policy statement
- SUA Open Source IPOPP GSC-15570-1.pdf – software use agreement
- VERSIONLOG – version info

6.2.6 Testing the Installation

By default the server uses 'rt-stps\..\data' directory to store processed results. This
location is specified in the configuration files in the 'rt-stps\config' directory. After testing
the installation the user may wish to edit the configuration files to change the destination
directory from 'rt-stps\..\data' to a preferred location. Refer to section 12.9.

6.2.6.1 Start the Server Manually

The JSW is not supported under Windows, so it's necessary to start the server from the
command prompt using the provided server script in the 'rt-stps\bin' directory. From the
command line in the 'rt-stps' directory, enter:

C:\Users> cd C:\Users\drl\rt-stps
C:\Users\drl\rt-stps> bin\server.bat

The server captures all output to a log file named "rt-stps-server.log" in the 'rt-stps\logs'
directory. The "rt-stps-server.log" file will appear in the 'rt-stps\logs' directory after a
configuration file has been loaded with the viewer, as described in section 6.2.6.2.

To check that the server is running, use the Windows Task Manager window to find the
javaw associated with the server.

6.2.6.2 Execute the Viewer

Next start the viewer application from the command prompt. The viewer allows the user
to load configuration files and view processing status. From the command line in the 'rt-
stps' directory, enter:

C:\Users\drl\rt-stps> bin\viewer.bat

This command will bring up the viewer Graphical User Interface (GUI), depicted in
Figure 4. Use the Load button to load the "npp_with_omps.xml" configuration file from
the 'rt-stps\config' directory. Use the file dialog to find this directory and file. Once the
file loads, select the Go button. The viewer GUI is depicted in Figure 4.

RT-STPS Version 5.6 Page 13 May 2014

Figure 4. RT-STPS Viewer

6.2.6.3 Execute the Sender

Next start the sender application. The sender allows the user to send telemetry data
files to the server for processing. It also displays the percentage of the file that has been
sent to the server. From the command line in the 'rt-stps' directory, enter:

C:\Users\drl\rt-stps> bin\sender.bat

This will bring up the sender GUI. On the sender GUI select the File button and use the
file dialogue to find and select the "rt-stps_npp_testdata.dat" file in the 'testdata\input'
directory extracted from the RT-STPS_5.6_testdata.zip file. Once the file is selected,
click on the Go button to send the file to the server for processing. The sender is
depicted in Figure 5.

RT-STPS Version 5.6 Page 14 May 2014

Figure 5. RT-STPS Sender

6.2.6.4 Inspect the Results

Once processing is complete (the viewer status buttons will show that no more data is
being processed, and the sender will show that it is Done), inspect the contents of the
'rt-stps\..\data' directory. It should contain RDR files with the following filenames (the
date of the creation fields that start with a 'c' will be different):

RATMS-RNSCA_npp_d20120529_t1657471_e1702031_b00001_c20140502204548171000 _all-_dev.h5

RCRIS-RNSCA_npp_d20120529_t1657471_e1702031_b00001_c20140502204547471000 _all-_dev.h5

RNSCA-ROLPS_npp_d20120529_t1657344_e1702338_b00001_c20140502204548284000 _all-_dev.h5

RNSCA-RONPS_npp_d20120529_t1657424_e1701268_b00001_c20140502204548311000_all-_dev.h5

RNSCA-ROTCS_npp_d20120529_t1657424_e1702042_b00001_c20140502204548297000_all-_dev.h5

RNSCA-RVIRS_npp_d20120529_t1656471_e1702285_b00001_c20140502204546826000_all-_dev.h5

Test output products are available in the 'rt-stps\testdata\output' directory. The test
output products serve as an indicator of expected program output. Use a comparison
utility (such as h5diff, etc.) to compare your output products to those provided in the 'rt-
stps\testdata\output' directory. Locally generated products may differ slightly from the
provided test output products because of differences in machine architecture or
operating systems.

file:///F:/RT-STPS/Downloads/newtestdata.png

RT-STPS Version 5.6 Page 15 May 2014

6.2.6.5 Stop the Server

Once the test is complete the server may be stopped by running the stop script provided
in the 'rt-stps\bin' directory. From the command line in the 'rt-stps' directory, enter:

C:\Users\drl\rt-stps> bin\stop.bat

WARNING: Since the RT-STPS viewer/sender requires the RT-STPS server to be
running, it is advised that the sender and viewer be stopped prior to stopping the server.

6.2.7 Creating Shortcuts

Create shortcuts to the viewer and sender as follows:

1) In the 'rt-stps\bin' directory, right-click the "viewer.bat" and "sender.bat" files and
select "Create Shortcut".

2) Move the shortcuts to the desired location (e.g., the Desktop).

3) Rename the shortcuts "RT-STPS Viewer" and "RT-STPS Sender" respectively.

4) Right-click the shortcuts and select "Properties". Modify the "Start in:" field to be

the absolute path of the 'rt-stps' directory. Change the "Run:" selection to
"Minimized".

6.2.8 Firewall Configuration

A firewall may in some cases prevent RT-STPS from running correctly, and it may need
to be disabled or configured to allow access for certain ports. The server accepts data
by default on port 4935. The output port numbers, if any, are defined in the configuration
files. The viewer initially connects through port 1099; afterwards, the viewer and server
communicate through anonymous ports.

6.3 Java Setup and Performance Notes

Many of the scripts (batch files) in the RT-STPS 'bin' directory employ the "-server"
option to increase performance, as the Sun Java Virtual Machine (JVM) server version
may be somewhat faster than the client version of the JVM. By default the JRE comes
with the client JVM only, and to use the server JVM, you must install the JDK. If the
JDK is installed ensure that is on the PATH before the JRE.

If the "-server" option is used in a script and the server JVM is not properly installed,
Windows will issue an error message as follows:

Error: no 'server' JVM at "...\jreX.X.X\bin\server\jvm.dll"

7 Program Operation

This section includes instructions for both Linux and Windows platforms.

RT-STPS can be started as a server from a command line server script, or from the

RT-STPS Version 5.6 Page 16 May 2014

JSW (Linux only). A configuration file is required to describe the telemetry format
specifications and the data outputs for the spacecraft of interest. Typically, the setup
configuration file will be loaded prior to each pass. Sample setup files are stored in the
'rt-stps/config' directory.

The 'rt-stps/../data' directory is the default target for output file results for both the Linux
and Windows version of RT-STPS.

A sample raw telemetry file named "rt-stps_npp_testdata.dat" resides in the
'testdata/input' directory extracted from the RT-STPS_5.6_testdata.tar.gz (.zip) file. It
contains packet data from the VIIRS, ATMS, CrIS, and OMPS instruments aboard the
Suomi NPP satellite. A corresponding "npp_with_omps.xml" configuration file resides in
the 'config' directory. Use it to produce VIIRS, ATMS, CrIS, and OMPS RDRs.
Instructions for testing RT-STPS using these sample files are contained in sections
6.1.6 (Linux) and 6.2.6 (Windows). The RT-STPS package also includes the "aqua.xml"
and "terra.xml" configuration files.

7.1 Starting the Server

The server may be started from a command line server script, or from the JSW (Linux
only). For Linux, it is strongly recommended to start the server from the JSW.

7.1.1 Command Line Script

Change to the 'rt-stps' directory and run the server script:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./bin/server.sh &

Windows

C:\Users> cd C:\Users\drl\rt-stps
C:\Users\drl\rt-stps> bin\server.bat

7.1.2 Java Service Wrapper (Linux Only)

Change to the 'rt-stps' directory and issue the start command to the JSW:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./jsw/bin/rt-stps-server.sh start

These commands initiate the server process in the background. When ready, the
"Ready to serve" status message is logged to the appropriate location. Refer to section
7.5 for details regarding logging.

RT-STPS Version 5.6 Page 17 May 2014

7.2 Viewer

The viewer may be run from the command line or as a shortcut from the desktop if this
has been configured on your system. To run from the command line, change to the 'rt-
stps' directory and execute the viewer script:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./bin/viewer.sh &

Windows

C:\Users> cd C:\Users\drl\rt-stps
C:\Users\drl\rt-stps> bin\viewer.bat

The viewer GUI will appear on the screen (see Figure 4). Use the viewer to configure
the server and examine its status, as well as to load and unload configuration files.

7.2.1 Viewer Function Summary

7.2.1.1 Menu Bar

The Menu Bar contains the File, Commands, and Status pull-down menus.

7.2.1.2 File Menu

The File Menu contains the program Exit item.

7.2.1.3 Commands Menu

The Commands Menu contains the following commands to configure and run the
server:

a) Local Load. Displays a Dialog Box to select and load a configuration file stored
on the computer executing the viewer.

b) Remote Load. Displays a Dialog Box to select and load a configuration file

stored on the computer executing the server.

c) Go. Starts server data processing.

d) Stop. Halts server data processing.

e) Unload. Removes the current configuration file from the server.

f) Zero Status. Resets the statistics display.

RT-STPS Version 5.6 Page 18 May 2014

7.2.1.4 Status Menu

The Status Menu contains menu items to display Path Service Status, Packet Status,
the Virtual Channel Status Table, and the Packet Status Table.

7.2.1.5 Button Bar

The button bar contains buttons linked to the Commands Menu items (see Figure 4).

7.3 Sender

The RT-STPS sender (Figure 3) is used to send a raw data file to the server. The
sender may be run from the command line or as a shortcut from the desktop if this has
been configured on your system. To run from the command line, changed into the 'rt-
stps' directory and execute the sender script:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./bin/sender.sh &

Windows

C:\Users> cd C:\Users\drl\rt-stps
C:\Users\drl\rt-stps> bin\sender.bat

The Target Host should be "localhost", the Target Port number should be "4935", and
the delay between sends should be zero. Click on the File button. Use the File dialogue
to select the desired raw data file, and click on the Go button to send the file to the
server for processing. The server status may be checked using the RT-STPS viewer.
When the sender finishes, the server will automatically halt data processing and unload
the current configuration file.

7.4 Batch Mode

A batch command performs server processing as a standalone, one-time program. It
takes as arguments a configuration file and an input data file containing telemetry
frames. The outputs are specified in the configuration file. At the command line, change
to the 'rt-stps' directory and run the batch script:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./bin/batch.sh <path-to-config-file> <path-to-data-file>

Windows

C:\Users> cd C:\Users\drl\rt-stps

RT-STPS Version 5.6 Page 19 May 2014

C:\Users\drl\rt-stps> bin\batch.bat <path-to-config-file> <path-to-data-file>

NOTE: –D properties are not supported through the scripts.

7.5 Logging

There are two types of RT-STPS output messages: status/event messages, and
standard output. RT-STPS logs these messages depending on the type of installation
and how the RT-STPS server was started:

IPOPP Mode Installations:

In IPOPP mode, server status/event messages are sent to the NISGS Status/Event
Logging System (NSLS) by default. These messages indicate the server's current
status, and are generated whenever the server's status changes (e.g., a configuration
file is loaded).

Standalone Mode Installations:

In Standalone mode, server status/event messages are logged into the "rt-stps-
server.log" file in the 'rt-stps/jsw/logs' (Linux) or 'rt-stps\logs' (Windows) directory by
default.

In both modes, standard output messages generated by the RT-STPS server are only
logged if the server is started from the JSW (Linux only). Standard output messages are
logged in rolling log files named "rt-stps-server.log.*" in the 'rt-stps/jsw/logs' directory,
which are automatically managed by the JSW.

Additional log options are possible. See section 10 for more information on server
configuration details.

7.6 Stopping the Server

The server may be stopped from a command line script or from the JSW (Linux only),
depending on how it was started. Because the sender and viewer require the RT-STPS
server to be running, it is advised that the sender and viewer be stopped prior to
stopping the server.

7.6.1 Command Line Script

If the server was started using the command line server script, change to the 'rt-stps'
directory and run the stop script:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./bin/stop.sh

RT-STPS Version 5.6 Page 20 May 2014

Windows

C:\Users> cd C:\Users\drl\rt-stps
C:\Users\drl\rt-stps> bin\stop.bat

7.6.2 Java Service Wrapper (Linux Only)

If the server was started from the JSW, change to the 'rt-stps' directory and issue the
stop command to the JSW:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./jsw/bin/rt-stps-server.sh stop

7.7 Rebuilding

If it is necessary to rebuild the RT-STPS distribution, stop the server (refer to section
7.6) then run the build scripts:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./build.sh

Windows

C:\Users> cd c:\Users\drl\rt-stps
C:\Users\drl\rt-stps> build.bat

This command will compile the Java source files and create the "rt-stps.jar" file in the
'lib' directory.

Warning for Linux users: The build.sh script calls the Java Remote Method
Invocation Compiler (RMIC) "rmic.exe" program to build the remote method invocation
portion of RT-STPS. The GNU version of RMIC cannot be used with the RT-STPS
build script. Ensure that the Java rmic.exe program is before the GNU RMIC program in
the system PATH, so the build.bat file will execute properly. Alternatively, edit the
build.sh script and hard-code the absolute path to Java rmic.exe.

Warning for Windows users: The build.bat script calls the "rmic.exe" program to build
the remote method invocation portion of RT-STPS. However, if Cygwin is installed on
your system, the distribution may include a program of the same name. The Cygwin
version of RMIC cannot be used with the RT-STPS build script. Ensure that the Java
rmic.exe program is before the Cygwin RMIC program in the system PATH, so that the
build.bat script will execute properly. Alternatively, edit the build.bat script and hard-
code the absolute path to Java rmic.exe.

RT-STPS Version 5.6 Page 21 May 2014

8 Raw Data Record (RDR) Creation

8.1 Supported RDRs

RT-STPS Version 5.6 supports the creation of Raw Data Records (RDRs) for the Suomi
NPP VIIRS, ATMS, CrIS, and OMPS instruments. Attitude and ephemeris packets
included in the input produce the corresponding Spacecraft Diary with each RDR.

8.2 Test Data

The RT-STPS_5.6_testdata.tar.gz (.zip for Windows) file contains a sample Suomi NPP
raw input data file named "rt-stps_npp_testdata.dat".

This file may be processed with RT-STPS to produce RDRs for the Suomi NPP VIIRS,
ATMS, CrIS, and OMPS instruments.

8.3 Suomi NPP Configuration File for RDRs

RT-STPS includes an "npp_with_omps.xml" configuration file that defines everything
necessary to create the Suomi NPP VIIRS, ATMS, CrIS, and OMPS RDRs, as well as
to output VIIRS science packets to a socket interface. The "npp_with_omps.xml"
configuration file can be used as the basis to create other RDR configurations of interest
(e.g., a configuration file dedicated solely to VIIRS Science RDRs, among others).
Refer to Section 12.9.4 for additional configuration file details. The RDR creation
process is depicted in Figure 6.

Figure 6. RDR Creation Process

Load configuration file,
view progress

Front End Processor
and packet outputs

Send files to Server

Sender

Viewer

RT-STPS
Server

Socket

VIIRS
RDR

ATMS
RDR

CrIS
RDR

OMPS
RDR

 RDR

RT-STPS Version 5.6 Page 22 May 2014

8.4 Processing the Test Data

Decompress and un-archive the RT-STPS_5.6_testdata.tar.gz (.zip) file. Refer to
section 6.1.6.1 (Linux) and section 6.2.6.1 (Windows).

Use the viewer to load the configuration file. Refer to section 6.1.6.2 (Linux) and section
6.2.6.2 (Windows) for instructions to execute the viewer. Use the sender to send the 'rt-
stps_npp_testdata.dat' file to the server for processing. Refer to section 6.1.6.3 (Linux)
and section 6.2.6.3 (Windows) for instructions to execute the sender.

On both Linux and Windows installations, the server uses the 'rt-stps/../data' directory
by default to store processed results. Refer to section 6.1.6.4 (Linux) and section
6.2.6.4 (Windows) for additional details.

8.5 RDR Processing Status

When RT-STPS is run in server mode, the RDR processing module updates some
status information as it creates granules for the RDR of interest. The status information
may be viewed using the RT-STPS viewer, or by using the getstatus script (refer to
section 9.1). In batch mode, this information is output to the console directly. Refer to
section 7.4 for instructions to run RT-STPS in batch mode.

8.6 Expected Output

Once processing is complete, the viewer status buttons will show that no more data is
being processed, and the sender will show that it is done. The 'rt-stps/../data/' directory
should contain the generated RDR files. Refer to section 6.1.6.4 (Linux) and section
6.2.6.4 (Windows) for more details regarding the expected output when processing the
"rt-stps_npp_testdata.dat" raw data file.

8.7 Reference Sources

Details on mission data specifications are contained in the following documents:

 Joint Polar Satellite System (JPSS) Common Data Format Control Book -
External Volume II – RDR Formats;

 Joint Polar Satellite System (JPSS) Common Data Format Control Book -
External Volume V – Metadata.

Information to identify, distinguish and extract all of the X-band unique source packets
from the Suomi NPP mission data streams is contained in the Joint Polar Satellite
System (JPSS) Mission Data Format Control Book (MDFCB).

These documents are available via the DRL Web Portal at:

http://directreadout.sci.gsfc.nasa.gov/?id=dspContent&cid=16

http://directreadout.sci.gsfc.nasa.gov/?id=dspContent&cid=16

RT-STPS Version 5.6 Page 23 May 2014

9 Additional Command Line Tools

Additional scripting tools in the 'rt-stps/bin' directory provide additional functionality to
RT-STPS.

9.1 Getstatus

The getstatus script periodically retrieves status information from the active RT-STPS
server on the local host until it is stopped. The format is:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./bin/getstatus.sh

Windows

C:\Users> cd C:\Users\drl\rt-stps
C:\Users\drl\rt-stps> bin\getstatus.bat

9.2 Load

The load script loads a local configuration file into the local server. The format is:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./bin/load.sh <path-to-config-file>

Windows

C:\Users> cd C:\Users\drl\rt-stps
C:\Users\drl\rt-stps> bin\load.bat <path-to-config-file>

9.3 Shutdown

The shutdown script halts data processing and unloads the current configuration file on
the local server. The format is:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./bin/shutdown.sh

Windows

C:\Users> cd C:\Users\drl\rt-stps
C:\Users\drl\rt-stps> bin\shutdown.bat

RT-STPS Version 5.6 Page 24 May 2014

9.4 Version

The version script prints RT-STPS version information and exits. The format is:

Linux

/home> cd /home/drl/rt-stps
/home/drl/rt-stps> ./bin/version.sh

Windows

C:\Users> cd C:\Users\drl\rt-stps
C:\Users\drl\rt-stps> bin\version.bat

9.5 Rate Buffering Program

RT-STPS includes a rate-buffering program (Rat) that can spool data to a slow target
(e.g., such as through a slow network). The server may run slowly because all outputs
are processed in one control loop, without internal buffering or internal multi-threading.
By using the Rat as an intermediate destination, the server can keep one slow target
from slowing the outputs of other targets being serviced at the same time.

Rat may be run on the same computer as the server, or from a remote location. It
requires three arguments when it is invoked:

Linux:

/home> cd /home/drl/rt-stps
/home/drl/rt-stps>./bin/rat.sh <inputPort> <targetHost> <targetPort>

Windows:

C:\Users> cd C:\Users\drl\rt-stps
C:\Users\drl\rt-stps> bin\rat.bat <inputPort> <targetHost> <targetPort>

Rat listens for socket connections on its input port. When a connection is made, it
connects to the target on the target port, forming an end-to-end connection. However, it
can only service one input connection at a time. Once connections are established, Rat
will buffer input data while sending some data to the slower output connection. Once
the input connection closes, Rat will continue to send buffered data to the target until it
has no more data, at which point it will close the target connection. Rat forms end-to-
end connections after the RT-STPS server has connected to it and will run continuously,
listening for and accepting connections until it is terminated.

To stop the Rat program, find its process ID and use the appropriate tools/commands to
terminate it. For example:

RT-STPS Version 5.6 Page 25 May 2014

Linux

Search for the rat.sh process ID, and terminate it. Use commands such as "ps aux" and
"grep" to find the correct process ID:

/home/drl/rt-stps> ps aux | grep "rat.sh"
/home/drl/rt-stps> kill <Process-ID>

Windows

Search for the javaw.exe process ID associated with rat.bat, and terminate it. Use a
command such as "wmic" to display the full command lines and process IDs of all active
javaw.exe processes in order to identify the correct javaw.exe process, if there are
multiple instances running:

C:\Users\drl\rt-stps> wmic process where name="javaw.exe" get
ProcessID,CommandLine
C:\Users\drl\rt-stps> taskkill /F /PID <Process-ID>

RT-STPS Version 5.6 Page 26 May 2014

10 Additional Server Configuration Options

The RT-STPS server is configured using command line arguments and system property
definitions, or through the JSW configuration file on Linux. In IPOPP mode, much of the
configuration is performed automatically during the installation process.

The server takes a name argument when invoking it. The full server name then
becomes "RtStpsServices." + name. The default full server name is "RtStpsServices.A"
if no other name is specified.

NOTE: If RT-STPS is installed in IPOPP mode, the NISGS Status/Event Logging
System (NSLS) server configuration is performed automatically during the installation
process. This configuration overrides any log definitions below.

The server can be configured using several system properties. Set them when using
the -D attribute (e.g.,"-Dport=4935"). If not set, default values will be used as described
below.

a) -Dconfig=xmlConfigFileName. A configuration file to be used until overridden by
a loaded file. The default name is "default.xml".

b) -Dport=4935. The port number that the Server reads for telemetry data. The

default port is 4935.

c) -DbufferSizeKb=16. The amount of data to accumulate before processing. The
default is 16 kb.

d) -Dsetup=configurationDirectory. The directory where local configuration files are

located. If provided, all files must be within the directory tree. The default is 'rt-
stps/config'.

e) -Dlog.stdout. If specified, log messages are written to the standard output.

f) -Dlog.file=<file>. If specified, log messages are written to <file>.

g) -Dlog.server=<host:port:tmpDir>. If specified, log messages are sent to the

NISGS Status/Event Logging System (NSLS) at host:port (e.g., localhost:3500)
and to the temporary directory tmpDir when the NSLS is unavailable.

These arguments and system properties are set in the "rt-stps/bin/server.sh" (Linux) or
"rt-stps\bin\server.bat" (Windows) files, or in the configuration file "rt-stps/jsw/conf/rt-
stps-server.conf" in the JSW on Linux.

RT-STPS Version 5.6 Page 27 May 2014

Additional system properties may also be present but should not be modified. For
example:
…
#Java Additional Parameters
Wrapper.java.additional.9=-Dlog.server:MyNSLSServer:3500:/tmp
…

If the server fails to initialize properly, and errors occur before the log service is found,
some error messages may go to console instead.

10.1 Configuring the Log

If none of the "-Dlog.*" properties are specified in the server's arguments, log messages
are written to the "rt-stps/rt-stps-server.log" file, and standard output is displayed directly
on the console.

Additional log options are available as follows:

a) Write log events to a remote NSLS server: specify –Dlog.server:
hostname:port:tmpDir. If the remote server is not available, an "event file" will be
created with an ".sjo" extension for each event in the specified tmpDir.

b) Write log events to a file: specify –Dlog.file=<path-to-log-file>, and the file will be
created if it does not exist.

c) Write events to stdout: specify –Dlog.stdout, and any event will be written to the
standard output.

10.2 Automatic Setup

If the server is running but no configuration file is loaded and data arrives on its
incoming data port (port 4935), then the server will use the "default.xml" file as its
configuration file.

Similarly, if the server is running but has not been re-configured with a new
configuration file, and data unexpectedly arrive on its incoming data port, then the
server will use the previous configuration file.

If the server is shutdown, it will revert back to using the "default.xml" file when next
started.

10.3 Adding a Second Server

To run a second server, change its name and input port number to something other
than 4935, and give this server a different name. The other scripts and configuration
files must be edited to accommodate the new name and ports.

RT-STPS Version 5.6 Page 28 May 2014

10.4 Provided Configuration Files

The 'rt-stps/config' directory contains sample setup files. The sample XML files are as
follows:

a) default.xml – default configuration loaded by RT-STPS if a configuration file is not
otherwise specified.

b) aqua.xml – reads Aqua spacecraft telemetry from socket 4935 and writes PDS

(packet file and Construction Record [CSR] file pairs) data to files and a port for
each of the major instruments aboard the spacecraft.

c) terra.xml – reads Terra spacecraft telemetry from socket 4935 and writes PDS

and CSR metadata to files and a port for the MODIS instrument.

d) npp.xml – reads Suomi NPP spacecraft telemetry and will produce RDRs for the
ATMS, CrIS, and VIIRS instruments, with or without attitude and ephemeris
(depending upon their presence in the data).

e) npp_with_omps.xml – produces the same RDR output as npp.xml, with the

addition of OMPS RDRs, allowing VIIRS, ATMS, CrIS, and OMPS RDRs to be
produced simultaneously.

11 Alternate Server Interface

There is an additional command interface to the server accessible by software. This
interface is useful to integrate the RT-STPS into a larger system with customization
(e.g., connect it to scheduling software that may be modified to run RT-STPS).

The interface is through port 5935. (The port number is fixed.) The server expects to
receive certain text string messages on this port for control. Each message should
have the normal line terminator, and case is significant. The messages are commands
to load and shut down sessions. The available commands are:

a) loadgo <configurationFileName> - the server will load the configuration file from
its configuration directory, and then enables itself for processing (e.g., "loadgo
npp.xml");

b) shutdown - stops processing and unloads the current configuration, which closes

all output files;

c) quit (or a "" string) - this terminates the connection through port 5935 and shuts
downs the server processing; the server then waits for a new connection.

The server does not send responses to any of these commands. The only feedback is
via the server's console window. It will print the usual load and shutdown messages. It
will also print error messages labeled as "ProxyThread" messages if it encounters them.

RT-STPS Version 5.6 Page 29 May 2014

12 Understanding the Configuration Files

An RT-STPS XML configuration file defines the processing chain, virtual channels and
packets of interest, and outputs. Its syntax is defined by the XML Document Type
Definition (DTD) "rt-stps.dtd".

Each RT-STPS configuration file begins and ends with the rt-stps element and id such
as:

<rt_stps id="NPP">
 <!-- configuration info here -->
 </rt_stps>

The id is often the mission name. The id is not required. The id will be displayed by the
viewer on the status line when it loads the configuration.

A detailed explanation of every configuration file element and attribute follows; along
with examples for common usage.

12.1 Frame Synchronizer Element

Exactly one frame synchronizer (frame_sync) element may appear in a file. The
element controls frame synchronization functions.

The frame_sync element determines if Pseudo-noise (PN) is removed from frames.
Note that if processing Terra, the PN decoding happens in a different order and this is
set by the specifying terra_decoder element (refer to Table 1).

The following is an example of a typical configuration:

 <frame_sync frameLength="1024" PnEncoded="true">
 <timestamp epoch="19580101000000"/>
 </frame_sync>

RT-STPS Version 5.6 Page 30 May 2014

Table 1. frame_sync Element

Field Default Description

pattern 0x1ACFFC1D The frame synchronization pattern. The
default is the CCSDS standard. The
number of characters in the pattern
determines the pattern length. It must be
at least two bytes long.

frameLength 1024 The frame length in bytes. If the frames
contain Reed-Solomon parity, then specify
a frame length that satisfies the Reed-
Solomon decoder. For example, 1024 is
the required frame length for RS interleave
4 frames. Or for interleave 5 frames, use
1264. Interleave 1 frames are 256 bytes.
Please note that the frame lengths must
include the 4-byte attached
synchronization marker.

slip 0 In bits, 0 is typical. The field must have a
value of 0, 1, or 2.

trueSync true True: searches for the pattern exactly as
specified. If invertedSync is true, set this
to false.

invertedSync false True: searches for an inverted sync
pattern. Set trueSync to false if this field is
true.

correctPolarity true If true, correct the polarity of frames that it
determines have an inverted sync pattern.
It inverts the entire frame and not just the
pattern. This field is ignored unless
invertedSync is true.

flywheelDuration 0 If non-zero, it will skip over this many
blocks of "length" bytes before it again
searches for the pattern. Zero is typical.

sendFlywheels false True: send on flywheel frames as if they
were lock frames. False: discard them.

pnEncoded false True: assumes the frames are encoded
with bit transition density encoding, and it
will decode the frames. (Note: the PN
decoder is specified as a separate link with
the name "pn". It is embedded in the frame
synchronizer setup because it does not
have any additional setup fields).

RT-STPS Version 5.6 Page 31 May 2014

Field Default Description

epoch 19950810000000

(Aug 10, 1995
00:00:00)

The epoch, sessionStart, and stepSize
fields configure the clock used to create
frame annotation. This may be important if
annotation is being created with each
packet, frame, or unit, or the output is EOS
PDS files through the "sorcerer" element.
The epoch sets the start time from which
all times are measured. Its format is a
string of the form: "YYYYMMDDhhmmss."

sessionStart The current wall
clock time.

This will be the time of the first data unit.
By default, sets the session start time to
the computer's current time. By changing
session start, the session appears to run at
a different date and time. The format for
specifying sessionStart is the same as
epoch. Omit this field to get the default
behavior.

stepSize 0 Normally, the time difference between
frames will be real time, after adjusting for
epoch and the session start time. If this
field is set to a positive value, then the
annotation timestamps of successive
frames will differ by this step size (in
milliseconds), and the wall clock is
ignored. For example, if stepSize is set to
100, then each frame's time will differ from
the preceding one by 100 milliseconds.
(Note: The frame synchronizer will not
adjust the time to account for sync
dropouts, so do not rely on the step size to
detect lost frames. It will adjust for flywheel
frames, dropped or not.)

RT-STPS Version 5.6 Page 32 May 2014

12.2 Cyclic Redundancy Check (CRC) Decoder Element

Only one Cyclic Redundancy Check (CRC) decoder element may appear in a
configuration. When set it checks frames for CRC errors and may discard frames if it
detects errors. The frames must have 16-bit CRC parity. Otherwise, either omit this
elements setup, or bypass it in the links setup.

Table 2. crc Element

Field Default Description

includeSyncPattern false When true, the CRC decoder will include the
synchronization pattern in the CRC calculation.
This is an atypical setup.

discardBadFrames true After the decoder calculates CRC and
compares it against the parity in the frame, it
can either discard the frame or pass it on to the
next processing element. If it passes it on, a
field in the quality annotation will mark it as a
frame with a CRC error. (Note: The CRC error
will appear as a count in the viewer's display. If
frames with CRC errors are passed, be aware
that subsequent elements may also encounter
non-fatal processing errors depending on where
in the frame the error occurred. In addition data
units may be routed to incorrect destinations, or
data units may have incorrect science or
engineering data, because of the indeterminate
bit errors in the frame).

offsetToParity 0 This is the byte offset from the frame start to the
first byte of CRC parity, which is two bytes wide.
In general, the CRC parity follows the frame
data but precedes any Reed-Solomon parity. If
this field is set to zero, then it calculates the
value. Change it only if there is a non-standard
location for the parity.

startSeed 0xFFFF This is the start value for calculating the CRC
parity. It is usually all ones or all zeroes. (Note:
if there are CRC errors on every frame and
there is certainty that the frames do contain
CRC parity, try setting this field to zero.)

RT-STPS Version 5.6 Page 33 May 2014

12.3 Reed-Solomon Decoder Element

Only one Reed-Solomon decoder element (reed_solomon) may appear in a
configuration. It checks frames for block Reed-Solomon errors if they are Reed-
Solomon encoded, and attempts to correct the errors if so configured. It may discard
frames if it detects errors. It does not perform CCSDS VCDU header error detection
and correction. If Reed-Solomon parity is present, then the length of frames is preset to
certain absolute values. For interleaves 1 through 5, the standard CCSDS frame
lengths are 256, 512, 760, 1024, and 1264 respectively. From a processing standpoint
Reed-Solomon detection and correction is resource-intensive. If there are performance
problems in a real-time environment, try turning off block correction.

An example in common usage for several NASA missions is as follows:

<reed_solomon useStandardCCSDS="true" doBlockCorrection="true"
discardUncorrectables="true" interleave="4"/>

Table 3. reed_solomon Element

Field Default Description

interleave 4 This field's value must match the
spacecraft's Reed-Solomon interleave value.
Only values between 1 and 5 inclusive are
allowed.

doBlockCorrection true True: attempt to correct any frame errors. It
will then mark the frame's quality annotation
as corrected if it corrected the frame, or as
uncorrectable if it could not fix the errors or if
this field was set to false.

discardUncorrectables true True: discard any frame that it cannot
correct, or any frame that has an error and
doBlockCorrection was turned off. (Note: As
with passing on frames with CRC errors,
passing on frames with RS errors may
cause errors in subsequent processing, as
well as incorrect routing or corrupted
science or engineering data).

useStandardCCSDS true True: use a standard CCSDS setup, which
includes the virtualFill and dual fields as well
as several hidden fields. (Note: This field
should always be set to true.)

virtualFill -- The number of virtual fill bytes in each
frame.

dual true Dual mode or non-dual mode.

RT-STPS Version 5.6 Page 34 May 2014

12.4 Spacecrafts

The spacecrafts element contains one or more spacecraft elements; only one
spacecrafts element is allowed. Each child spacecraft element defines information
about a different spacecraft. Typically only one is set for most configurations. A typical
spacecraft definition is as follows:

<spacecrafts>
 <spacecraft label="spid1" id="157"/>
</spacecrafts>

Table 4. spacecrafts Element

Field Default Description

label None The label is a unique name for this
element, and other items will refer to this
element by the label. Provide a label that
is unique to the entire configuration.
Often it will set to the spacecraft name.

id None This is the spacecraft ID, a number is
required.

insertZoneLength 0 Some CCSDS setups will have an Insert
Zone embedded in every CADU. If
present provide the zone length in bytes
even if it will not be used later. The
default is zero bytes, no Insert Zone
present.

headerErrorControlPresent false If true, then each CADU VCDU header
has special parity included in the CADU.
If the error control field is present, set
this field to true even if detecting or
correcting VCDU header errors is
needed.

doHeaderDecode false Not currently implemented. It may in the
future be used to detect and correct
errors in the CADU VCDU header.
Header error control information and
parity must be present if this field is true.

12.5 Terra Decoder Element

The Terra Decoder is a PN decoder for the Terra spacecraft that decodes a specific
non-standard PN encoding. Omit it for any other spacecraft. The link name is its label.
It has no arguments other than a required unique label field. It is typically specified as
follows:

<terra_decoder label="TerraDecoder" />

RT-STPS Version 5.6 Page 35 May 2014

12.6 CADU Service Element

Only one cadu_service element may appear in a configuration, and it defines the entry
point for all CCSDS processing. The service routes the frames to different CCSDS
services based upon virtual channel and spacecraft numbers. It is a list of one or more
mappings of spacecraft ID and virtual channel ID pairs to CCSDS service labels.

The element name for a member of its map list is "svlink," and Table 5 describes
"svlink" fields. Note that multiple (spid, vcid) pairs may map to the same target, and one
(spid, vcid) pair may map to multiple targets. Frame CADUs with unmapped (spid, vcid)
pairs are counted and discarded. Typically, it will map pairs to elements in the
"ccsds_services" list, but this is not required. For example, it could map an "svlink" to
an output channel. A short example of two virtual channels is as follows:

<cadu_service>
 <svlink vcid="1" spid="157" label="VCID1"/>
 <svlink vcid="6" spid="157" label="VCID6"/>
</cadu_service>

Table 5. cadu_service Element

Field Default Description

spid None A spacecraft ID, a number, which will be found inside a
CADU. Required.

vcid None A virtual channel ID, a number, which will be found inside a
CADU. Required.

label None The label of used in an element that expects CADUs or
frames. All CADUs with matching spid and vcid will be sent
to this item. Required.

12.7 CCSDS Services Element

The ccsds_services element lists CCSDS service options: vcdu, bitstream, and path.
They may be arranged in any order. Typically, the cadu_service element will link to
these services.

12.7.1 VCDU Service Element

There may be more than one vcdu element. Each one must have a unique label. The
VCDU processing removes the VCDU from a CADU and sends it for further processing.
It can also send Coded VCDUs (CVCDU), which are VCDUs with Reed-Solomon parity
still attached. One VCDU node usually processes VCDUs for one virtual channel.

RT-STPS Version 5.6 Page 36 May 2014

Table 6. vcdu Element

Field Default Description

label None The label uniquely identifies this item, and it must be
different from any other item label in the
configuration. The name typically incorporates the
virtual channel number. Required.

spacecraft None A reference to a spacecraft label, which is defined in
the spacecrafts list. Required.

discardRsParity false If true, the VCDU node will discard Reed-Solomon
parity from each VCDU before forwarding it. The
processing element gets the parity length from the
Reed-Solomon node, so configure the Reed-
Solomon decoder node to use this option. The
Reed-Solomon element must be in the configuration
file, but it need not be a linked element.

12.7.2 Bitstream Service Element

There may be more than one bitstream element. Each must have a unique label. The
Bitstream node removes the BPDU from a CADU and sends it on to a node that accepts
units. One Bitstream node usually processes BPDUs for one virtual channel. It does
not merge BPDUs.

This processing element accounts for Reed-Solomon and CRC parity by searching for
the existence of those decoder nodes, even if they are not linked into the pipeline. If the
CADUs do not have Reed-Solomon parity, make sure to remove the Reed-Solomon
element from the setup. Merely bypassing it is insufficient. Otherwise, the BPDUs will
be truncated. The same is true for CRC parity; remove the element definition if CRC
parity is not present.

RT-STPS Version 5.6 Page 37 May 2014

Table 7. bitstream Element

Field Default Description

label None The label uniquely identifies this item, and it must
be different from any other node label in the
configuration. The name typically incorporates
the virtual channel number. Required.

spacecraft None A reference to a spacecraft label, defined in the
spacecrafts list. Required.

OCFpresent false If true, every CADU will contain a 32-bit
Operational Control Field (OCF). The OCF (also
known as the Command Link Control Word or
CLCW) is echo information from the forward
command link. The bitstream element uses this
flag to compute the BPDU length. Incorrectly
setting this field will cause BPDUs to be short or
long by four bytes.

crcParityPresent false Bitstream processing uses this flag to compute
the BPDU length. If true, it will subtract two bytes
from the BPDU length. If false, it will look for the
CRC Decoder node and flip this flag to true if it
finds it, and then it will subtract two bytes. If this
field is false, it will automatically detect for CRC
parity presence. If true, it will assume CRC parity
is present regardless of whether or not the CRC
Decoder element is available.

12.7.3 Path Service Element

There may be more than one path element. Each one must have a unique label. The
path service performs packet reassembly on a CADU's data zone and sends the
packets on for further processing. One Path service usually processes CADUs from
one virtual channel.

This service accounts for Reed-Solomon and CRC parity by searching for their
existence even if they are not linked into the pipeline. If the CADUs do not have Reed-
Solomon parity, make sure to remove the Reed-Solomon element from the setup.
Merely bypassing it is insufficient. Otherwise, packets may be truncated, and the node
will report numerous dropouts and sequence errors. The same is true for CRC parity;
remove the element definition if CRC parity is not present.

RT-STPS Version 5.6 Page 38 May 2014

Table 8. path Element

Field Default Description

label None The label uniquely identifies this node,
and it must be different from any other
node label in the setup. The name
typically incorporates the virtual channel
number. Required.

spacecraft None A reference to a spacecraft label, which is
defined in the spacecrafts list. Required.

maxRationalPacketSize 8192 This is the maximum rational packet size
in bytes. Make sure this field is larger
than the packet size.

fill 0xC9 When the Path Service is unable to fill a
packet in its entirety, it will fill the
remainder by repeatedly appending this
fill byte. (Note: it will discard any packet
that does not have a packet header and
at least one byte of real data.) It marks
the packet annotation for packets with fill
data.

OCFpresent false If true, the node expects that every CADU
will contain a 32-bit Operational Control
Field (OCF). The OCF (also known as
the Command Link Control Word or
CLCW) is echo information from the
forward command link. This flag is used
to compute the data zone length.
Incorrectly setting this field will cause
short packets and sequence errors
because it will include OCF data in the
data zone.

crcParityPresent false The Path processing uses this flag to
compute the data zone length. If true, it
will subtract two bytes from the data zone
length. If false, it will look for the CRC
Decoder element and flip this flag to true
if it finds it, and then it will subtract two
bytes. If this field is false, it will
automatically check for CRC parity
presence. If true, it will assume CRC
parity is present regardless of whether or
not the CRC Decoder is available.

RT-STPS Version 5.6 Page 39 May 2014

Field Default Description

discardPacketsWithFill false If true, discard short packets to which it
added fill data. If true, it will send them
on, but it will also mark them in the packet
annotation.

discardIdlePackets true If true, discard idle packets. Idle packets
are fill packets that usually contain no
useful data. (Note: Idle packets should
usually be discarded unless there is other
information in them that is needed. If it
does send them on, it marks them as idle
in the packet annotation.)

Packets are sorted by their application IDs, they may be forwarded to more than one
recipient. The definition contains a list of one or more mappings of application IDs to
packet processing labels using the pklink element. The pklink fields are described in
Table 9. Packets with unmapped application IDs are counted and discarded. Typically,
application IDs are mapped to elements in the packets list, but this is not required. For
example, it is legal to map a pklink to a packet output channel.

Table 9. pklink Element

Field Default Description

appid None The application ID. Required.

label None The label of an item that accepts packets. Required.

An example for several packets from VCID1 is as follows:

<ccsds_services>
<path label="VCID1" spacecraft="spid1" maxRationalPacketSize="65542">
 <pklink appid="101" label="FILL_101"/>
 <pklink appid="515" label="ATMS_515"/>
 <pklink appid="528" label="ATMS_528"/>
 <pklink appid="530" label="ATMS_530"/>
 <pklink appid="531" label="ATMS_531"/>
 </path>
</ccsds_services>

12.8 Packets Element

The packets element defines a packet for each application ID. Its primary functions are
to verify that each packet has an acceptable size and to look for sequence errors, which
indicate a loss of one or more packets. Packet elements should correspond to pklink
definitions.

RT-STPS Version 5.6 Page 40 May 2014

Several of the packet definitions that correspond to the packets element are as follows:

<packets>

<packet appid="514" label="ATMS_514" minSize="7" maxSize="65542"/>
<packet appid="515" label="ATMS_515" minSize="7" maxSize="65542"/>
<packet appid="516" label="ATMS_516" minSize="7" maxSize="65542"/>
<packet appid="517" label="ATMS_517" minSize="7" maxSize="65542"/>

</packets>

Table 10. packets Element

Field Default Description

label None The label uniquely identifies this
item, and it must be different from
any other node label in the setup.
The name typically incorporates the
application ID. Required.

appid None An application ID associated with
this item. Optional, use for self
documentation.

minSize 15 The minimum packet size that this
node accepts. If it detects a packet
with a length that is not within
minSize and maxSize inclusive, it
will mark the packet's annotation,
and it may delete the packet if so
configured.

maxSize 8192 The maximum packet size that this
node accepts. If packets are one
size, set maxSize and minSize to
the same value.

discardWrongLengthPackets true If true, discards packets with sizes
that are not within minSize and
maxSize. Otherwise, it marks the
packet annotation and sends them
on to the next node.

checkSequenceCounter true If true, the node checks the packet
sequence counters for packet gaps.
It reports the number of gaps and
cumulative count of missing packets
in its status. It also marks packet
annotation for packets that are near
gaps.

RT-STPS Version 5.6 Page 41 May 2014

12.9 Output Channels Element

The output_channels element defines a list of output channels. Any number may be
defined; one may accept information from multiple sources. Most output channel
elements will accept only one data unit type: packets, frames, or units. A number of
forms of outputs are supported, including: TCP/IP sockets, files, PDS files, RDR files
and null. (The null channel simply discards data. Its only field is its label, which must
be unique.) For most applications, the output channel area will accept packets that are
listed in the links element area as described below.

12.9.1 File Output Channel Element

The element name is "file," and there may be more than one element.

Table 11. file Element

Field Default Description

label None The label uniquely identifies this item, and it
must be different from any other label in the
setup. Required.

unitType None Enumerated values are: UNIT, PACKET, or
FRAME. This field describes the type of
data unit, required.

annotation None Enumerated values are: NONE, BEFORE,
or AFTER. This field determines if
annotation is to be written with each data
unit and where it should go. Frames and
units get frame annotation. Packets get
packet annotation followed by frame
annotation. NONE means the data units
are written without annotation. Use
BEFORE to write the annotation before
each data unit. Use AFTER to append the
annotation.

directory -- The output file directory. If omitted files will
be created in the default data directory,
which is usually 'data'. The default
directory is defined as an argument in the
script that starts the server. If using a
different directory, specify it here.

filename -- The name of the file that will be created. If
autoGenerateFilename to true, then omit
this field.

userLabel -- This is an optional label that the node
inserts into the file name when
autoGenerateFilename to true.

RT-STPS Version 5.6 Page 42 May 2014

Field Default Description

autoGenerateFilename true If true, the node generates a unique
filename that should not overwrite an
existing file. The file name will have the
form "t"+ "p or f or g" +
"yyyyDDDHHmmss"+ "userLabel" + ".dat".
The "t" stands for "telemetry." It then inserts
"p", "f", or "g" for "packets", "frames", or
"general" units. It finally adds the date and
a user label.

12.9.2 Annotation

Annotation refers to quality and time, and it may be optionally appended or prefixed to
each data unit. The sorcerer output channel creates EOS Terra or Aqua spacecraft
Production Data Set (PDS) and Expedited Data Set (EDS) files. PDS and EDS files
each include a Construction Record (CSR) and one or more packet files containing un-
annotated packets. If an annotation option is chosen, then RT-STPS writes 64 bits of
frame annotation with each frame, packet, or unit. In the packet case, it also writes 32
bits of packet annotation before the frame annotation.

Table 12. Packet Annotation

Bits Packet Annotation (32 bits) Precedes Frame Annotation

31-18 Not used (most significant bit)

17 1= packet has invalid length, which is outside the configured minimum
and maximum packet length for this packet stream.

16 1= this packet could not be constructed in its entirety, and so it has
appended fill data.

15-0 The number of "good" bytes in this packet. For complete packets, it is
the packet length. For packets with fill, it is the index of the first fill byte.

Use the following to create a plain file output channel:

<file autoGenerateFilename="true" label="ENG_OUT_FILE" unitType="PACKET"
directory="./data" annotation="NONE" userLabel="ENG_OUT"/>

Table 13. Frame Annotation

Bits Frame Annotation (2 x 32 bits)

31-26 Not used (most significant bit)

25 1= Frame contains an idle/fill VCDU (CCSDS state).

24 1= Frame has bad first header pointer (CCSDS error).

23 1= Path Service had problem composing a packet from this frame.

22 1= sequence error between this frame and preceding frame

21 1= Frame is Reed-Solomon uncorrectable.

RT-STPS Version 5.6 Page 43 May 2014

20 1= Frame is Reed-Solomon corrected.

19 1= Frame has CRC error.

18 1= Slipped frame (Frame was aligned.)

17 1= Inverted frame (Polarity was corrected.)

16 1= Lock frame

15-0 Day of year (1-366)

31-0 Milliseconds of day

12.9.3 Socket Output Channel Element

To use socket outputs, there must be a client at the target computer waiting at a server
socket to establish a connection. If there is no server, then trying to load a configuration
with socket output will fail.

A socket connection sending data units to a server can be a considerable bottleneck for
RT-STPS because there is a single control loop through the entire processing chain
including the output channels, essentially meaning that processing will run no faster
than the slowest processing element, including output channels. If this problem occurs,
consider using the Rate Buffering Program (Rat), described in section 9.6.

The following example shows a socket definition which will feed another remote
application.

<output_channels>
<socket label="modis_socket" unitType="PACKET" annotation="NONE"
host="localhost" port="3511" bufferSize="65536" />

</output_channels>

RT-STPS Version 5.6 Page 44 May 2014

Table 14. socket Element

Field Default Description

label None The label uniquely identifies this item, and it must
be different from any other node label in the
configuration. Required.

unitType None Enumerated values: UNIT, PACKET, or FRAME.
This field describes the type of data unit accepted
by this item. Required.

annotation None Enumerated values: NONE, BEFORE, or AFTER.
This field determines if annotation is to be written
with each data unit and where it should go.
Frames and units get frame annotation. Packets
get packet annotation followed by frame
annotation. NONE means the data units are
written without annotation. BEFORE means the
annotation is written before each data unit. AFTER
means annotation is appended.

bufferSize 8192 The node configures the output socket to use this
buffer size. To improve network performance,
experiment with this number.

host None The host name or IP address of the target
computer. Required.

port None The port number of the target computer for the
target connection.

RT-STPS Version 5.6 Page 45 May 2014

12.9.3.1 Sorcerer Output Channel Element

Define the sorcerer element to create one or more EOS PDS or EDS file sets. A file set
consists of a Construction Record (CSR) file and packet files. A data file contains
packets without annotation for up to three application IDs. Consult an EOS Interface
Control Document (ICD) to understand the significance of some of these fields.

Table 15. sorcerer Element

Field Default Description

label None The label uniquely identifies this item,
and it must be different from any other
node label in the setup. Required.

major 0 The major version number. This value is
inserted into the construction record and
has no effect on processing.

minor 0 The minor version number. This value is
inserted into the construction record and
has no effect on processing.

spid 42 The spacecraft ID. This value is inserted
into the construction record and has no
effect on processing.

path -- The output file directory. If omitted files
will be created in the default data
directory, which is usually "data". The
default directory is defined as an
argument in the script that starts the
server. Choose to put your files in a
different directory by specifying it here.

datasetCounter 0 A number that is embedded in the
construction record and the file name.

create -- The creation date for the output files,
which is inserted into the construction
record. If omitted, the current date and
time will be used. If provided, the format
is: "yyDDDHHmmss".

KBperFile 0 Kilobytes per file. If set to zero, the
construction record file and data file will
contain all packets from the session. If
set to a positive number, it will split the
data file into a set of data files,
approximately this size. Each file name
will have a sequence number embedded
in it. Note that the file name field has
room for only 99 data files.

RT-STPS Version 5.6 Page 46 May 2014

Field Default Description

test false A flag embedded in the construction
record to indicate that the PDS contains
test data instead of real data.

type PDS Append "PDS" or "EDS" file to the file. It
does not affect processing except when
QuicklookEDS is set to "true".

quicklookEDS false This field is ignored unless the type is
"EDS". When true and type is "EDS,"
only writes packets that have the
quicklook flag enabled in their secondary
header. Do not turn this flag on for non-
Terra application IDs that do not use the
Terra secondary header format.

discardBadLengthPackets True If true, discards packets with an incorrect
length. Otherwise, it will write them.

12.9.3.2 Application ID Sub-element

Each appid sub-element sets up one application ID. There must be at least one appid
element, but there may be no more than three. Each appid may also contain a list of
valid packet lengths. Specify a range of valid lengths, or list the lengths individually.

Table 16. appidSub-element

Field Default Description

id None Specifies the application ID number. This field is
required.

vcid None The virtual channel number from which this
application ID came. An application ID may come
from a maximum of two virtual channels. Specify the
second one in vcid2. This field is required.

vcid2 None A second virtual channel number. Omit this field if
there is no second virtual channel for this application
ID.

spid 42 The spacecraft ID. (e.g., 154 is the ID for Aqua.)

CUCtime false This field determines the expected packet secondary
header format. If it is not set correctly, then the time
fields in the construction record will have an incorrect
format. Set this to false for all Terra application IDs.
For Aqua, consult the ICD. Some applications IDs
use a nine byte secondary header (all Terra) in which
the time field is in CCSDS Day Segmented format.

stepsize 1 The packet sequence number step size. Do not
change this number. Sorcerer uses it to determine
the gap size for missing packets.

RT-STPS Version 5.6 Page 47 May 2014

Field Default Description

minLength -- The minimum packet length. It must be at least 15
and not bigger than maxLength. There are two ways
to configure packet lengths. Either set minLength
and maxLength, or provide a list of "packetLength"
elements, one for each length. If provided in a list,
minLength and maxLength are ignored. However,
one of the two methods must be used.

maxLength -- The maximum packet length.

12.9.3.3 Packet Length Sub-element

The sub-element name is packetLength. Each statement defines a valid packet length
for an application ID in this PDS. Some application IDs may have more than one packet
length; list them here, one per statement. The following example is typical of sorcerer
elements:

<output_channels>
<sorcerer label="GBAD" path="../data" spid="154">
<appid id="957"vcid="3"minLength="126" maxLength="126"
timeOffset="6" CUCtime="true" />
</sorcerer>
<socket label="modis_socket" unitType="PACKET" annotation="NONE"
host="localhost" port="3511" bufferSize="65536" />

</output_channels>

Table 17. packetLengthSub-element

Field Default Description

length None A packet length, required.

12.9.4 RDR Output Element

The RDR output element defines an RDR output formatted file. One or more RDR
outputs may be defined. RT-STPS supports the creation of RDRs for the Suomi NPP
VIIRS, ATMS, CrIS, and OMPS instruments. Attitude and ephemeris packets included
in the input produce the corresponding Spacecraft Diary with each RDR.

RT-STPS Version 5.6 Page 48 May 2014

Table 18. RDR Element

Field Default Description

label None The label uniquely identifies this node,
and it must be different from any other
node label in the setup, required.

directory -- The output file directory. Required. The
RDR will be created in the specified
location if it exists.

mission Suomi
NPP

Only Suomi NPP-compatible RDRs are
supported at this time. This field is
currently not checked by the internal
software and is hardcoded to Suomi
NPP. Reserved for future use.

12.9.4.1 Packet List

The RDR created is dependent on the packet list defined and linked to it. For example,
in order to output a VIIRS RDR file, the appropriate VIIRS packets must first be defined
in the packet tag area (along with related CCSDS services and path tags). These
packets of interest must be defined in the links area that refers to the RDR of interest. If
attitude and ephemeris are desired, their various services, path and packet tags must
be defined, and then a link defined to them for the VIIRS RDR. The same process
would be used to output RDRs for ATMS, CrIS, and OMPS.

The software automatically senses which RDR to build based on its input packets; the
proper packet list must be defined so that the CCSDS packet processing portion of RT-
STPS passes the correct packets to it. If this is not the case an RDR will not be created
(i.e., if no application identifiers match the internal application identifier table for each
RDR).

12.9.4.2 Supported Application Identifiers

RT-STPS processes a raw packet input file into an RDR. It will filter unwanted packets
that do not constitute the particular RDR of interest with the proper configuration file.
For example, if a VIIRS RDR is being created, the application identifiers for that RDR
should be defined in the configuration file. Table 19 contains the supported application
IDs by type.

Table 19. Supported Application Identifiers

Type Application IDs

VIIRS 800 – 823, 825 and 826

ATMS 515, 528, 530, 531

CrIS 1315-1395, 1289 and 1290

OMPS 560-563

Spacecraft Diary 11

In order to create an RDR file with Spacecraft Diary, RT-STPS should be configured to

RT-STPS Version 5.6 Page 49 May 2014

filter the science packets of interest, and it should include packets with appid 11 into the
output file. The resulting configuration file may then be used to produce the RDRs of
interest along with the Spacecraft Diary.

Table 20. Supported Application Identifiers by RDR

RDR Application IDs

VIIRS and Spacecraft Diary 800 – 823, 825 and 826 and 11

ATMS and Spacecraft Diary 515, 528, 530, 531 and 11

CrIS and Spacecraft Diary 1315-1395, 1289, 1290 and 11

OMPS and Spacecraft Diary 560-563, and 11

12.10 Links Element

The links element links processing modules or outputs together using the "from" and
"to" fields.

Table 21. links Element

Field Default Description

from None The source node from which data units are sent. This
is an element label and is required.

to None The destination node to which data units are sent. This
is an element label and is required.

Table 22 contains labels are predefined to configure the processing chain.

Table 22. Predefined Labels

Node Label

Frame Synchronizer frame_sync

PN Decoder pn

CRC Decoder crc

Reed-Solomon Decoder reed_solomon

Frame Status frame_status

CADU Service cadu_service

A typical links path from the frame synchronizer to CADU Service is as follows:

<link from="frame_sync" to="pn" />
<link from="pn" to="crc" />
<link from="crc" to="reed_solomon" />
<link from="reed_solomon" to="frame_status" />
<link from="frame_status" to="cadu_service" />

RT-STPS Version 5.6 Page 50 May 2014

Modify this links path as needed. For example if CRC decoding is not being used, then
remove the CRC lines and substitute: link from="pn" to="reed_solomon". Then add
output channel links to the list as in this example:

<link from="vcdu18" to="file1" />
<link from="bitstream30" to="file2" />
<link from="a256" to="file3" />
<link from="ENG_11" to="ATMS_SCI_AE_RDR"/>
<link from="ATMS_515" to="ATMS_SCI_AE_RDR"/>
<link from="ATMS_528" to="ATMS_SCI_AE_RDR"/>
<link from="ATMS_530" to="ATMS_SCI_AE_RDR"/>
<link from="ATMS_531" to="ATMS_SCI_AE_RDR"/>

Other links to other outputs would also be defined here.

