Table of Contents

1 General .. 1
2 Algorithm Wrapper Concept ... 1
3 Software Description ... 1
4 Software Version ... 2
5 Credits .. 3
6 Prerequisites .. 3
7 Program Inputs and Outputs ... 3
8 Installation and Configuration ... 3
 8.1 Installing as a Standalone Application ... 3
 8.2 Installing into an IPOPP Framework .. 4
9 Software Package Testing and Validation .. 5
10 Program Operation ... 5
 10.1 To Use the Run Scripts ... 6
 10.2 To Use the Scripts in the Testscripts Directory ... 9
11 H2G Image Products ... 9
 11.1 Standard Products .. 10
 11.1.1 Legends .. 16
 11.1.2 Generating H2G Standard Products .. 16
 11.1.3 Overriding Projection and Resolution of Standard Products 18
 11.2 Subsetting and Mosaicing ... 19
Appendix A. SPA Services ... A-1
Appendix B. Modifying Maximum Java Heap Size ... B-1
Appendix C. H2G Standard Product Descriptions .. C-1
1 General

The NASA Goddard Space Flight Center's (GSFC) Direct Readout Laboratory (DRL), Code 606.3 developed this software for the International Polar Orbiter Processing Package (IPOPP). IPOPP maximizes the utility of Earth science data for making real-time decisions by giving fast access to instrument data and derivative products from the Joint Polar Satellite System (JPSS), Suomi National Polar-orbiting Partnership (SNPP), Aqua, and Terra missions.

Users must agree to all terms and conditions in the Software Usage Agreement on the DRL Web Portal before downloading this software.

Software and documentation published on the DRL Web Portal may occasionally be updated or modified. The most current versions of DRL software are available at the DRL Web Portal:

https://directreadout.sci.gsfc.nasa.gov/?id=software

Questions relating to the contents or status of this software and its documentation should be addressed to the DRL via the Contact DRL mechanism at the DRL Web Portal:

https://directreadout.sci.gsfc.nasa.gov/?id=dspContent&cid=66

2 Algorithm Wrapper Concept

The DRL has developed an algorithm wrapper to provide a common command and execution interface to encapsulate multi-discipline, multi-mission science processing algorithms. The wrapper also provides a structured, standardized technique for packaging new or updated algorithms with minimal effort.

A Science Processing Algorithm (SPA) is defined as an algorithm to which the wrapper has been applied. SPAs will function in a standalone, cross-platform environment to serve the needs of the broad Direct Readout community. Detailed information about SPAs and other DRL technologies is available at the DRL Web Portal.

3 Software Description

This DRL software package contains the H2G_SPA (Hierarchical Data Format [HDF] to Georeferenced Tagged Image File Format [GeoTIFF] Converter Science Processing Algorithm). H2G_SPA is specially designed for Direct Readout applications and can create geolocated GeoTIFF images, jpeg browse images, and png browse images for various parameter datasets in SNPP and NOAA-20 (JPSS-1) VIIRS/ATMS/CrIS/OMPS SPA products and Terra/Aqua MODIS Level 2 SPA products. H2G also creates standard true color images from supported VIIRS and MODIS science products. The H2G_SPA functions in two modes: Standalone, or as an IPOPP plug-in.
The geolocated GeoTIFF images are Geographic Information System (GIS)-ingestible and can also be opened by standard image viewers. The non-geolocated jpeg and png images are more suitable as browse images. These browse images are enhanced with vector overlays of land/sea boundaries, political boundaries, and latitude/longitude lines.

H2G_SPA incorporates the following features to enhance output images and facilitate scientific interpretation:

- 186 pre-configured image products spanning multiple missions and multiple instruments.
- GIS-ingestible geotiffs.
- Pre-defined color map and scales for appropriate science product representation.
- Choice of either geographic or stereographic projection for the output image. Inclusion of other projections is under consideration for future releases of H2G_SPA.
- Use of appropriate land/water masks when applicable for better science product representation.
- Subsetting of swaths into user-defined regions of interest.
- Mosaicing of multiple swaths.
- jpeg and png browse images with legends, vector overlays, and latitude/longitude overlays.
- Fire pixel overlays on H2G geotiffs (e.g., fire pixel overlays on True Color image).
- The capability to configure H2G for new products, user-defined parameter scales, colormaps and masks. Documentation can be made available on request.

4 Software Version

Version 1.4 of the DRL algorithm wrapper was used to package the SPA described in this document. The SPA uses H2G processing code (Version 2.5, April 2018). The H2G_SPA stereographic projection capability utilizes the JPROJ.4 Java Native Interface (JNI) to the PROJ.4 Cartographic Projections Library. This library was initially developed by the U.S. Geological Survey (USGS) and is currently being maintained/enhanced by the Open Source Geospatial Foundation (OSGeo).

Enhancements to this SPA include:

- Added support for NOAA-20 (JPSS-1) VIIRS/ATMS/CrIS image processing.
- Updated testdata and testscripts.
The capability to generate high resolution VIIRS and MODIS sharpened True Color imagery now resides in the BlueMarble_SPA, which may be used to produce VIIRS/MODIS-scan-geometry consistent high resolution products. High resolution NDVI/EVI generation capability is being considered for inclusion into BlueMarble_SPA.

Improved fire mask capability that leverages the VIIRS-AF and VFIRE375 algorithms.

This software will execute on a 64-bit computer. This software has been tested on a computer with 32GB of RAM and a CentOS 7 Linux X86_64 operating system.

Copyright 1999-2007, United States Government as represented by the Administrator for the National Aeronautics and Space Administration. All Rights Reserved.

5 Credits
H2G was developed by the DRL at NASA/GSFC.

6 Prerequisites
To run this package, you must have the Java Development Kit (JDK) or Java Runtime Engine (JRE) (Java 1.6.0_25 or higher) installed on your computer, and the bin directory of your Java installation in your PATH environment variable.

7 Program Inputs and Outputs
H2G_SPA supports VIIRS SDR, ATMS SDR, CrIS SDR, OMPS, and various VIIRS EDR/IP and Level 2 MODIS products as input. H2G_SPA has been pre-configured to produce 186 image products spanning multiple missions and multiple instruments.

8 Installation and Configuration
H2G_SPA can be run either as a standalone application or can be installed dynamically into an IPOPP framework as a plug-in.

8.1 Installing as a Standalone Application
Download the H2G_2.5_SPA_1.4.tar.gz and H2G_2.5_SPA_1.4_testdata.tar.gz (optional) files into the same directory.
Decompress and un-archive the H2G_2.5_SPA_1.4.tar.gz and H2G_2.5_SPA_1.4_testdata.tar.gz (optional) files:

$ tar -xzf H2G_2.5_SPA_1.4.tar.gz
$ tar -xzf H2G_2.5_SPA_1.4_testdata.tar.gz

This will create the following subdirectories:

SPA
 h2g
 algorithm
 station
 wrapper
 ancillary
 testscripts
 testdata

H2G_SPA was compiled with Java 1.6. H2G_SPA is configured to run with a maximum Java heap size of 2GB. H2G_SPA can fail on a computer with inadequate memory. Users may increase or decrease the memory specifications. Refer to Appendix B for instructions.

NOTE: Examples supplied from this point forward assumes that the SPA was installed into /home/ipopp/drl.

8.2 Installing into an IPOPP Framework

This SPA can also be installed dynamically into an IPOPP framework to automate production of H2G_SPA image products. The SPA installation process will install SPA service(s) into IPOPP. An SPA service is an IPOPP agent that provides the mechanism necessary for running an SPA automatically within the IPOPP framework. Once this SPA is installed, users must enable the SPA service(s) corresponding to this SPA along with any other prerequisite SPA service(s). Instructions for installing an SPA and enabling its SPA services are contained in the IPOPP User's Guide (available on the DRL Web Portal). The SPA service(s) associated with this SPA are listed in Appendix A.

Configuring H2G projection: H2G_SPA is pre-configured to produce geographically projected GeoTIFFs in IPOPP Mode. Users can configure H2G_SPA in IPOPP Mode from the IPOPP Dashboard. Open up the IPOPP Dashboard and use “Mode”>”IPOPP Configuration Editor” to change to Configuration Editor Mode. Now use “Actions”>”Configure Projection” to select the desired projection.
H2G_SPA is now configured and installed into the IPOPP framework. Refer to the IPOPP User's Guide for IPOPP operation.

9 Software Package Testing and Validation

The testscripts subdirectory contains test scripts that can be used to verify that your current installation of the SPA is working properly, as described below. Note that the optional H2G_2.5_SPA_1.4_testdata.tar.gz file is required to execute these testing procedures.

Step 1: cd into the testscripts directory.

Step 2: Run the 'run_h2g_lst-tiff' script by typing:

$./run_h2g_lst.sh

A successful execution usually takes some time, so if the execution seems to get stuck, do not become impatient. If everything is working properly, the script will terminate with a message such as:

Output h2gout is /home/ipopp/drl/SPA/h2g/testdata/output/LST.GEOG.tif

You can cd to the output directory to verify that the science product (in this example the Land Surface Temperature [LST] GeoTIFF image) exists. If it does exist, then the process executed successfully. If there is a problem and the code terminates abnormally, the problem can be identified using the log files. Log files are automatically generated within the directory used for execution. They start with stdfile* and errfile*. Other log and intermediate files may be generated automatically within the directory used for execution. They are useful for traceability and debugging purposes. However it is strongly recommended that users clean up log files and intermediate files left behind in the run directory before initiating a fresh execution of the SPA. Intermediate files from a previous run may affect a successive run and produce ambiguous results. Please report any errors that cannot be fixed to the DRL. Test output file(s) are provided for comparison in the testdata/output/h2g_standard_outputs directory. The output products serve as an indicator of expected program output. Use a comparison utility (such as a standard image viewer) to compare your output(s) to those provided in the testdata/output/h2g_standard_outputs subdirectory.

10 Program Operation

In order to run the package using your own input data, you can either use the run scripts within the wrapper directory, or modify the test scripts within the testscripts directory.
10.1 To Use the Run Scripts

Identify the 'run' script: The wrapper directory within this package contains the h2g subdirectory. You must execute the 'run' within the h2g/wrapper/h2g subdirectory to execute H2G_SPA. Note that to execute 'run', you need to have java on your path.

Specify input parameters using <label value> pairs: To execute the 'run' script, you must supply the required input and output parameters. Input and output parameters are usually file paths or other values (e.g., the output type). Each parameter is specified on the command line by a <label value> pair. Labels are simply predefined names for parameters. Each label must be followed by its actual value. The <label value> pairs must be specified on the command line in order for H2G_SPA to execute. Some of these pairs are optional, meaning the process would still be able to execute even if that parameter is not supplied. There are three types of <label value> pairs that the H2G_SPA uses, as follows:

a) Input file label/values. These are input file paths. Values are absolute or relative paths to the corresponding input file.

b) Parameter label/values. These are parameters that need to be passed onto the SPA (e.g., the image output type).

c) Output file labels. These are output files that are produced by the SPA. Values are the relative/absolute paths of the files you want to generate.

The following table lists and describes the labels associated with the SPA. Section 11, "H2G Image Products" contains detailed descriptions and examples of usage of these labels.

Table 1. Labels and Descriptions Required by H2G

<table>
<thead>
<tr>
<th>Input File Labels</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input.data</td>
<td>Path to the supported sensor data product (HDF4/HDF5 file) that contains the parameter dataset for which the image is being created.</td>
</tr>
<tr>
<td>input.data_n (n=2,3..10)</td>
<td>Path to the nth supported sensor data product (HDF4/HDF5 file) that contains the parameter dataset for which a mosaiced image is being created.</td>
</tr>
<tr>
<td>red.data</td>
<td>Path to the supported sensor data product (HDF4/HDF5 file) that contains the dataset which would be used as the red band during rgb image generation. This label is used along with green.data and blue.data labels when the red, green and blue bands are in different HDF files.</td>
</tr>
<tr>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>red.data</td>
<td>Path to the nth supported sensor data product (HDF4/HDF5 file) that contains the dataset which would be used as the red band during a mosaiced rgb image generation. This label is used along with the corresponding nth green.data and blue.data labels when the red, green and blue bands are in different HDF files.</td>
</tr>
<tr>
<td>green.data</td>
<td>Path to the supported sensor data product (HDF4/HDF5 file) that contains the dataset which would be used as the green band during rgb image generation. This label is used along with red.data and blue.data labels when the red, green and blue bands are in different HDF files.</td>
</tr>
<tr>
<td>green.data</td>
<td>Path to the nth supported sensor data product (HDF4/HDF5 file) that contains the dataset which would be used as the green band during a mosaiced rgb image generation. This label is used along with the corresponding nth red.data and blue.data labels when the red, green and blue bands are in different HDF files.</td>
</tr>
<tr>
<td>blue.data</td>
<td>Path to the supported sensor data product (HDF4/HDF5 file) that contains the dataset which would be used as the blue band during rgb image generation. This label is used along with green.data and red.data labels when the red, green and blue bands are in different HDF files.</td>
</tr>
<tr>
<td>blue.data</td>
<td>Path to the nth supported sensor data product (HDF4/HDF5 file) that contains the dataset which would be used as the blue band during a mosaiced rgb image generation. This label is used along with the corresponding nth green.data and red.data labels when the red, green and blue bands are in different HDF files.</td>
</tr>
<tr>
<td>mask (optional)</td>
<td>Path to the supported sensor data product (HDF4/HDF5 file) that contains the mask dataset used as a mask for the image being created. mask is not needed if either no mask is being used or the mask dataset is contained within input.data.</td>
</tr>
<tr>
<td>maskn (n=2,3..10)</td>
<td>Path to the nth supported sensor data product (HDF4/HDF5 file) that contains the mask dataset used as a mask for the mosaiced image being created. maskn is not needed if either no mask is being used or the mask dataset is contained within input.data.</td>
</tr>
<tr>
<td>geo (optional)</td>
<td>Path to the supported sensor geolocation data product (HDF4/HDF5 file) or the HDF file which contains the latitude and longitude datasets for the same swath. geo is not needed only when the geolocation information is within the input.data file (e.g., HDF outputs from IMAPP_SPA have their own geolocation).</td>
</tr>
<tr>
<td>geon (n=2,3..10)</td>
<td>Path to the nth supported sensor geolocation data product (HDF4/HDF5 file) or the HDF file which contains the latitude and longitude datasets for the nth swath product during mosaicing. geon is not needed only when the geolocation information is within the input.data file (e.g., HDF outputs from IMAPP_SPA have their own geolocation).</td>
</tr>
<tr>
<td>fireloc (optional)</td>
<td>Path to the fire-location text file. The fire-location text file is</td>
</tr>
</tbody>
</table>
produced by the MOD14_SPA. fireloc can be used to overlay fire pixels on the output image. fireloc can be used only when the image output type is geotiff.argb, jpeg.argb or png.argb. (See output.type label description below.)

<table>
<thead>
<tr>
<th>Parameter Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>firelocn (n=2,3..10)</td>
<td>Path to the nth fire-location text file. The fire-location text file is produced by the MOD14_SPA. firelocn can be used to overlay fire pixels on the mosaiced output image. firelocn can be used only when the image output type is geotiff.argb, jpeg.argb or png.argb. (See output.type label description below.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output File Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h2gout</td>
<td>Path to the geotiff, jpeg or png image product generated by H2G.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config.type</td>
<td>Configuration type. Can be (a) 'standard' for the standard H2G products; (b) 'singleband' for a user-defined single band image; or (c) 'rgb' for a user-defined RGB image.</td>
</tr>
<tr>
<td>config.name</td>
<td>config.name is either (a) the identifier for the standard H2G products; or (b) the path to the user-defined configuration file.</td>
</tr>
</tbody>
</table>
| output.type | output.type can be either (a) geotiff.u8cm (for an 8-bit colormap embedded GeoTIFF image); (b) geotiff.argb (for an RGB GeoTIFF image); (c) jpeg.argb (for an RGB jpeg image); or (d) png.argb (for an RGB png image).

NOTE: jpeg.argb and png.argb images do not have geolocation information. They are more useful as browse images. jpeg.argb and png.argb images have vector overlays of land/sea/political boundaries and may have legends (refer to Table 2 Notes). |
projection (optional)	Projection can be either (a) geographic or (b) stereographic. This parameter is used to override the projection defined for the H2G standard product or in the user-defined configuration file.
resolution (optional)	Used to specify the resolution of the output image product. When using the geographic projection, resolution is in degrees. For the stereographic projection, resolution is in meters.
browse_enhance (optional)	Note that this feature works only when ‘output.type’ is set to either ‘jpeg.argb’ or ‘png.argb’ which is why legends and land/sea/political boundaries are already enabled. ‘browse_enhance’ can be set to either ‘true’ or ‘false’ (default). When set to ‘true’ it additionally enables overlays of latitude/longitude grid lines.

Subsetting and Mosaicing parameters:

<table>
<thead>
<tr>
<th>Parameter Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>centerlat</td>
<td>These two parameters are used for subsetting/mosaicing and represent the center of the output image product. For a</td>
</tr>
</tbody>
</table>
stereographically projected image, this point also represents the center of projection.

height_km, width_km (in km, used for stereographic projections)

These two parameters are used during subsetting/mosaicing of stereographically projected image products. They represent the height and width of the output image in km. Together with centerlat and centerlon they describe the geographic extent of the output image.

height_lat, width_lon (in degrees, used for geographic projections)

These two parameters are used during subsetting/mosaicing of geographically projected image products. They represent the height and width of the output image in geographic degrees. Together with centerlat and centerlon they describe the geographic extent of the output image.

NOTE: The input.data, geo, mask HDF and fireloc text files must correspond to the same swath. Similarly the nth input.data, geon and maskn HDF and firelocn text files must correspond to the same swath.

10.2 To Use the Scripts in the Testscripts Directory

One simple way to run the algorithms from any directory of your choice, using your own data, is to copy the corresponding run-xxx scripts from the testscripts directory to your selected directory. Each of these scripts contains numerous examples. Change the values of the different variables to reflect the file paths of the wrapper directories and the input/output files. Then uncomment the example you wish to run. If required, add more parameters to the command line. Run the scripts to process your data.

11 H2G Image Products

This section describes:

- What are H2G standard products?
 - How to generate the standard products?
 - How to override the projection and resolution of the standard products?
- How to create subsetted and mosaiced image products.

H2G is pre-configured to generate the standard image products contained in Table 2, as described below in "Standard Products." Detailed instructions to generate standard image products follow. Users are reminded that numerous examples of command-lines are contained within the H2G_2.5_SPA_1.4_testdata.tar.gz archive.

NOTE: H2G can also generate user-defined products. Generation of user-defined (i.e., non-standard) image products, requires the user to undertake the additional step of writing a unique configuration file. These configuration files are simple text
files that supply the user configuration to H2G. Description of user-defined image products is beyond the scope of this User’s Guide. Users interested in using H2G’s user-defined image capabilities may contact DRL using the link provided at the beginning of this User’s Guide.

11.1 Standard Products
The standard outputs can be generated by setting the config.type label to 'standard' and using the correct identifier for the config.name label. Table 2 contains a list of standard outputs, with corresponding config.name identifiers and required input parameters. Table A-1 in Appendix A, "SPA Services," contains the H2G SPA services, filename patterns and locations of the image products when H2G is installed and run in IPOPP mode. H2G standard outputs are by default in geographic projection; instructions to override the default setting are contained in section 11.1.4.

Table 2. H2G Standard Outputs and Corresponding Input Requirements

<table>
<thead>
<tr>
<th>H2G Product #</th>
<th>'config.name' Identifiers for H2G Standard Products</th>
<th>Parameter (default resolution)</th>
<th>Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terra/Aqua MODIS Imagery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>ndvi (masks: water and cloud; Resolution: 0.01)</td>
<td>input.data <mod13 HDF output from NDVIEVI_SPA> mask <mod14 HDF output from MOD14_SPA> geo <MOD03 HDF output from MODISL1DB_SPA> h2gout <Path to tif, png or jpeg output image file> config.type standard config.name ndvi output.type <geotiff.u8cm</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>M2</td>
<td>evi (masks: water and cloud; Resolution: 0.01)</td>
<td>input.data <mod13 HDF output from NDVIEVI_SPA> mask <mod14 HDF output from MOD14_SPA> geo <MOD03 HDF output from MODISL1DB_SPA> h2gout <Path to tif, png or jpeg output image file> config.type standard config.name evi output.type <geotiff.u8cm</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>M3</td>
<td>lst (masks: water and cloud; Resolution: 0.01)</td>
<td>input.data <LST HDF output from MODLST_SPA> mask <mod14 HDF output from MOD14_SPA> geo <MOD03 HDF output from MODISL1DB_SPA> h2gout <Path to tif, png or jpeg output image file> config.type standard config.name lst output.type <geotiff.u8cm</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>M4</td>
<td>fire (Resolution: 0.01)</td>
<td>input.data <MOD14 HDF output from MOD14_SPA> geo <MOD03 HDF output from MODISL1DB_SPA> h2gout <Path to tif, png or jpeg output image file> fireloc <firelocation text file output from MOD14_SPA; ignored when output.type is geotiff.u8cm> config.type standard config.name fire output.type <geotiff.u8cm</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>M5</td>
<td>sst (Mask: SST quality flag; Resolution: 0.01)</td>
<td>input.data <SST HDF output from L2GEN_SPA> geo <MOD03 HDF output from MODISL1DB_SPA> h2gout <Path to tif, png or jpeg output image file> config.type standard config.name sst output.type <geotiff.u8cm</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>M6</td>
<td>chlor</td>
<td>input.data <Chlor HDF output from L2GEN_SPA> geo <MOD03 HDF output from MODISL1DB_SPA></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Task</td>
<td>Description</td>
<td>Input Data</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>M7</td>
<td>aerosol-aod-c6</td>
<td>Aerosol Optical Depth (Dark Target Algorithm)</td>
<td>input.data <mod04 HDF output from IMAPP_SPA></td>
</tr>
<tr>
<td>M8</td>
<td>aerosol-aod-combined-c6</td>
<td>Aerosol Optical Depth (Merged Dark Target and Deep Blue algorithms)</td>
<td>input.data <mod04 HDF output from IMAPP_SPA></td>
</tr>
<tr>
<td>M9</td>
<td>aerosol-aod-3km-c6</td>
<td>Aerosol Optical Depth (Aerosol 3km product)</td>
<td>input.data <mod06 HDF output from IMAPP_SPA></td>
</tr>
<tr>
<td>M10</td>
<td>cloudtop-irphase-c6</td>
<td>Cloud Phase</td>
<td>input.data <mod06 HDF output from IMAPP_SPA></td>
</tr>
<tr>
<td>M11</td>
<td>cloudtop-ctp-c6</td>
<td>Cloudtop Pressure</td>
<td>input.data <mod06 HDF output from IMAPP_SPA></td>
</tr>
<tr>
<td>M12</td>
<td>atmprofile-tpw-c6</td>
<td>Total Precipitable Water</td>
<td>input.data <mod07 HDF output from IMAPP_SPA></td>
</tr>
<tr>
<td>M13</td>
<td>cloudmask-c6</td>
<td>Cloudmask</td>
<td>input.data <mod35 HDF output from IMAPP_SPA></td>
</tr>
<tr>
<td>M14</td>
<td>tcolor0_01</td>
<td>True Color from corrected reflectances</td>
<td>input.data <crefl 1km HDF output from CREFL_SPA></td>
</tr>
<tr>
<td>M15</td>
<td>tcolorfire0_01</td>
<td>True Color with fire pixel overlays from corrected reflectances</td>
<td>input.data <crefl 1km HDF output from CREFL_SPA></td>
</tr>
<tr>
<td>M16</td>
<td>Firetile</td>
<td>MODIS Active Fires Daily Composite</td>
<td>input.data <Level3 Mod14 Daily composite Tiled product (output from BURNSCAR_SPA)></td>
</tr>
<tr>
<td>M17</td>
<td>tcolortile0_01</td>
<td>MODIS True Color Daily Composite</td>
<td>input.data <Level3 Corrected Reflectance Daily composite Tiled product (output from BURNSCAR_SPA)></td>
</tr>
</tbody>
</table>
config.type std
config.name tcolortile0_01
output.type <geotiff.argb | jpeg.argb | png.argb>

data < MODIS False Color
(Using MODIS bands 2, 5 and 7) Daily Composite
(Resolution 0.010)

geo <Path to tif, png or jpeg output image file>

colortile0_01

V1 vtcolor
VIIRS Top of Atmosphere True Color (Resolution 0.010)

red.data < VIIRS SVM05 HDF output from C-SDR_SPA>
green.data < VIIRS SVM04 HDF output from C-SDR_SPA >
blue.data < VIIRS SVM03 HDF output from C-SDR_SPA >
geo < VIIRS GMTCO HDF output from C-SDR_SPA >
h2gout <Path to tif, png or jpeg output image file>
config.type std
config.name vtcolor
output.type <geotiff.argb | jpeg.argb | png.argb>

data < MODIS False Color
(Using MODIS bands 2, 5 and 7) Daily Composite
(Resolution 0.010)

geo <Path to tif, png or jpeg output image file>

colortile0_01

V2 vdnbnigh
VIIRS Day/Night Band (configured for nighttime images; Resolution: 0.010)

input.data < VIIRS SVDBN HDF output from C-SDR_SPA >
geo < VIIRS GDNBO HDF output from C-SDR_SPA >
h2gout <Path to tif, png or jpeg output image file>
config.type std
config.name vdnbnigh
output.type <geotiff.argb | jpeg.argb | png.argb>

data < MODIS False Color
(Using MODIS bands 2, 5 and 7) Daily Composite
(Resolution 0.010)

geo <Path to tif, png or jpeg output image file>

colortile0_01

V3 vdnbdays
VIIRS Day/Night Band (configured for daytime images; Resolution: 0.010)

input.data < VIIRS SVDBN HDF output from C-SDR_SPA >
geo < VIIRS GDNBO HDF output from C-SDR_SPA >
h2gout <Path to tif, png or jpeg output image file>
config.type std
config.name vdnbdays
output.type <geotiff.argb | jpeg.argb | png.argb>

data < MODIS False Color
(Using MODIS bands 2, 5 and 7) Daily Composite
(Resolution 0.010)

geo <Path to tif, png or jpeg output image file>

colortile0_01

V4 vcvniirs
VIIRS True Color from CVIIRS Corrected Reflectances (Resolution: 0.010)

input.data < VIIRS CVIIRS MOD output from CVIIRS_SPA >
geo < VIIRS GMTCO HDF output from C-SDR_SPA >
h2gout <Path to tif, png or jpeg output image file>
config.type std
config.name vcvniirs
output.type <geotiff.argb | jpeg.argb | png.argb>

data < MODIS False Color
(Using MODIS bands 2, 5 and 7) Daily Composite
(Resolution 0.010)

geo <Path to tif, png or jpeg output image file>

colortile0_01

V5 vcvnirs
VIIRS Imagery Resolution True Color from CVIIRS Corrected Reflectances (Resolution: 0.0050)

red.data < CVIIRS IMG output from CVIIRS_SPA >
green.data < CVIIRS MOD output from CVIIRS_SPA >
blue.data < CVIIRS MOD output from CVIIRS_SPA >
geo < VIIRS GITCO HDF output from C-SDR_SPA >
h2gout <Path to tif, png or jpeg output image file>
config.type std
config.name vcvnirs
output.type <geotiff.argb | jpeg.argb | png.argb>

data < MODIS False Color
(Using MODIS bands 2, 5 and 7) Daily Composite
(Resolution 0.010)

geo <Path to tif, png or jpeg output image file>

colortile0_01

V6 vimgmfcolor
VIIRS False Color from GTMImagery EDR M1, M4, M9 Band Reflectances (Not projected)

input.data < VIIRS VM010 HDF output from GTMImagery_SPA >
geo < VIIRS GMTGO HDF output from GTMImagery_SPA >
h2gout <Path to tif, png or jpeg output image file>
config.type std
config.name vimgmfcolor
output.type <geotiff.argb | jpeg.argb | png.argb>

data < MODIS False Color
(Using MODIS bands 2, 5 and 7) Daily Composite
(Resolution 0.010)

geo <Path to tif, png or jpeg output image file>

colortile0_01

V7 vimgifcolor
VIIRS False Color from GTMImagery EDR I1, I2, I3 Band Reflectances (Not projected)

input.data < VIIRS V13BO HDF output from GTMImagery_SPA >
geo < VIIRS GIGTO HDF output from GTMImagery_SPA >
h2gout <Path to tif, png or jpeg output image file>
config.type std
config.name vimgifcolor
output.type <geotiff.argb | jpeg.argb | png.argb>

data < MODIS False Color
(Using MODIS bands 2, 5 and 7) Daily Composite
(Resolution 0.010)

geo <Path to tif, png or jpeg output image file>

colortile0_01

V8 vnccalbedo
VIIRS NCC Albedo
input.data < VIIRS VNCCO HDF output from GTMImagery_SPA >
<table>
<thead>
<tr>
<th>V9</th>
<th>viirsaf</th>
<th>VIIRS Fire Mask from VIIRS_AF_SPA (Resolution: 0.01°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>input.data <VIIRS VAF HDF output from VIIRSAF_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geo <VIIRS GMTCO HDF output from C-SDR_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h2gout <Path to tif, png or jpeg output image file></td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.type standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.name viirsaf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output.type <geotiff.argb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V10</th>
<th>vfire375</th>
<th>VIIRS Fire Mask from VFIRE375_SPA (Resolution: 0.01°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>input.data <VIIRS VF375 HDF output from VFIRE375_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geo <VIIRS GITCO HDF output from C-SDR_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h2gout <Path to tif, png or jpeg output image file></td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.type standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.name vfire375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output.type <geotiff.argb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V11</th>
<th>vtdicolor</th>
<th>VIIRS True Color with fire pixel overlays (Resolution: 0.01°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>input.data <VIIRS CVIIRS MOD output from CVIIRS_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geo <VIIRS GMTCO output from C-SDR_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h2gout <Path to tif, png or jpeg output image file></td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.type standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.name vtdicolor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output.type <geotiff.argb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V12</th>
<th>vcmmaskh5</th>
<th>VIIRS Cloud Mask (Resolution: 0.01°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>input.data <VIIRS IICMO HDF output from CloudMask_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geo <VIIRS GMTCO HDF output from C-SDR_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h2gout <Path to tif, png or jpeg output image file></td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.type standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.name vcmmaskh5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output.type <geotiff.argb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V13</th>
<th>vcmphaseh5</th>
<th>VIIRS Cloud Phase (Resolution: 0.01°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>input.data <VIIRS IICMO HDF output from CloudMask_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geo <VIIRS GMTCO HDF output from C-SDR_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h2gout <Path to tif, png or jpeg output image file></td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.type standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.name vcmphaseh5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output.type <geotiff.argb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V14</th>
<th>vaot550h5d</th>
<th>VIIRS Aerosol Optical Thickness at 550nm (Resolution: 0.01°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>input.data <VIIRS IVAOT HDF output from Aerosol_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geo <VIIRS GMTCO HDF output from C-SDR_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h2gout <Path to tif, png or jpeg output image file></td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.type standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.name vaot550h5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output.type <geotiff.argb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V15</th>
<th>vapsh5d</th>
<th>VIIRS Aerosol Particle Size (Resolution: 0.01°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>input.data <VIIRS IVAOT HDF output from Aerosol_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geo <VIIRS GMTCO HDF output from C-SDR_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h2gout <Path to tif, png or jpeg output image file></td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.type standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.name vapsh5d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output.type <geotiff.argb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V16</th>
<th>vsumh5</th>
<th>VIIRS Suspended Matter Type (Resolution: 0.01°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>input.data <VIIRS VSUMO HDF output from Aerosol_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geo <VIIRS GMTCO HDF output from C-SDR_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h2gout <Path to tif, png or jpeg output image file></td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.type standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.name vsumh5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output.type <geotiff.argb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V17</th>
<th>vctth5d</th>
<th>VIIRS Cloud Top Temperature (Resolution: 0.01°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>input.data <VIIRS IIVITD HDF output from COP_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geo <VIIRS GMTCO HDF output from C-SDR_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h2gout <Path to tif, png or jpeg output image file></td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.type standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.name vctth5d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output.type <geotiff.argb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V18</th>
<th>vcoth5d</th>
<th>VIIRS Cloud Optical Thickness (Resolution: 0.01°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>input.data <VIIRS IVCOP HDF output from COP_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>geo <VIIRS GMTCO HDF output from C-SDR_SPA></td>
</tr>
<tr>
<td></td>
<td></td>
<td>h2gout <Path to tif, png or jpeg output image file></td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.type standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>config.name vcoth5d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>output.type <geotiff.argb</td>
</tr>
<tr>
<td>Page 14</td>
<td>March 2019</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V19</th>
<th>vepsh5d</th>
<th>VIIRS Cloud Effective Particle Size (Resolution 0.01<sup>3</sup>)</th>
<th>input.data geo h2gout config.type config.name output.type</th>
<th><VIIRS IVCOP HDF output from COP_SPA> <VIIRS GMTCO HDF output from C-SDR_SPA></th>
<th>Path to tif, png or jpeg output image file</th>
<th>standard</th>
<th>vepsh5d</th>
<th><geotiff.argb</th>
<th>jpeg.argb</th>
<th>png.argb></th>
</tr>
</thead>
<tbody>
<tr>
<td>V20</td>
<td>vsnowbinh5</td>
<td>VIIRS Snow Cover Binary Map (Resolution 0.01<sup>3</sup>)</td>
<td>input.data geo h2gout config.type config.name output.type</td>
<td><VIIRS VSCMO HDF output from SnowCover_SPA></td>
<td><VIIRS GMTCO HDF output from C-SDR_SPA></td>
<td>Path to tif, png or jpeg output image file</td>
<td>standard</td>
<td>vsnowbinh5</td>
<td><geotiff.argb</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>V21</td>
<td>vsnowfrach5</td>
<td>VIIRS Snow Cover Fraction (Resolution 0.01<sup>3</sup>)</td>
<td>input.data geo h2gout config.type config.name output.type</td>
<td><VIIRS VSCDO HDF output from SnowCover_SPA></td>
<td><VIIRS GMTCO HDF output from C-SDR_SPA></td>
<td>Path to tif, png or jpeg output image file</td>
<td>standard</td>
<td>vsnowfrach5</td>
<td><geotiff.argb</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>V22</td>
<td>vsreflh5d</td>
<td>VIIRS Land Surface Reflectance True Color (Resolution 0.01<sup>3</sup>)</td>
<td>input.data geo h2gout config.type config.name output.type</td>
<td><VIIRS VIISR HDF output from SurfReflect_SPA></td>
<td><VIIRS GMTCO HDF output from C-SDR_SPA></td>
<td>Path to tif, png or jpeg output image file</td>
<td>standard</td>
<td>vsreflh5d</td>
<td><geotiff.argb</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>V23</td>
<td>vndvi-af</td>
<td>VIIRS NDVI (Resolution 0.01<sup>3</sup>)</td>
<td>input.data geo h2gout config.type config.name output.type</td>
<td><VIIRS VIVIO HDF output from VegIndex_SPA></td>
<td><VIIRS GMTCO HDF output from C-SDR_SPA></td>
<td>Path to tif, png or jpeg output image file</td>
<td>standard</td>
<td>vndvi-af</td>
<td><geotiff.argb</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>V24</td>
<td>vevi-af</td>
<td>VIIRS EVI (Resolution 0.01<sup>3</sup>)</td>
<td>input.data geo h2gout config.type config.name output.type</td>
<td><VIIRS VIVIO HDF output from VegIndex_SPA></td>
<td><VIIRS GMTCO HDF output from C-SDR_SPA></td>
<td>Path to tif, png or jpeg output image file</td>
<td>standard</td>
<td>vevi-af</td>
<td><geotiff.argb</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>V25</td>
<td>vlst-af</td>
<td>VIIRS Land Surface Temperature (Resolution 0.01<sup>3</sup>)</td>
<td>input.data geo h2gout config.type config.name output.type</td>
<td><VIIRS VLSTO HDF output from LST_SPA></td>
<td><VIIRS GMTCO HDF output from C-SDR_SPA></td>
<td>Path to tif, png or jpeg output image file</td>
<td>standard</td>
<td>vlst-af</td>
<td><geotiff.argb</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>V26</td>
<td>viirssst</td>
<td>VIIRS Sea Surface Temperature (from L2gen_SPA) (Resolution 0.01<sup>3</sup>)</td>
<td>input.data h2gout config.type config.name output.type</td>
<td><VIIRS SST HDF output from L2GEN_SPA></td>
<td>Path to tif, png or jpeg output image file</td>
<td>standard</td>
<td>viirssst</td>
<td><geotiff.argb</td>
<td>jpeg.argb</td>
<td>png.argb></td>
</tr>
<tr>
<td>V27</td>
<td>viirschlor</td>
<td>VIIRS Chlrophyl Concentration (from L2gen) (Resolution 0.01<sup>3</sup>)</td>
<td>input.data h2gout config.type config.name output.type</td>
<td><VIIRS Ocean Color HDF output from L2GEN_SPA></td>
<td>Path to tif, png or jpeg output image file</td>
<td>standard</td>
<td>viirschlor</td>
<td><geotiff.argb</td>
<td>jpeg.argb</td>
<td>png.argb></td>
</tr>
<tr>
<td>V28</td>
<td>vm.xrefl</td>
<td>VIIRS Mx band Reflectance (Resolution 0.01<sup>3</sup>)</td>
<td>input.data geo h2gout config.type config.name output.type</td>
<td><VIIRS SVMXX HDF output from C-SDR_SPA></td>
<td><VIIRS GMTCO HDF output from C-SDR_SPA></td>
<td>Path to tif, png or jpeg output image file</td>
<td>standard</td>
<td>vm.xrefl</td>
<td><geotiff.argb</td>
<td>jpeg.argb</td>
</tr>
<tr>
<td>V29</td>
<td>vmx.xbt</td>
<td>VIIRS MXX Brightness Temperature</td>
<td>input.data geo h2gout config.type config.name output.type</td>
<td><VIIRS SVMXX HDF output from C-SDR_SPA></td>
<td><VIIRS GMTCO HDF output from C-SDR_SPA></td>
<td>Path to tif, png or jpeg output image file</td>
<td>standard</td>
<td>vmx.xbt</td>
<td><geotiff.argb</td>
<td>jpeg.argb</td>
</tr>
</tbody>
</table>

(XX=01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11)

H2G_2.5_SPA_1.4
<table>
<thead>
<tr>
<th>V44 to V46</th>
<th>vixrefl (x=1,2,3)</th>
<th>VIIRS IX band Reflectance (Resolution: 0.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input.data</td>
<td>VIIRS SVIXX HDF output from C-SDR_SPA > geo</td>
</tr>
<tr>
<td></td>
<td>config.type</td>
<td>standard</td>
</tr>
<tr>
<td></td>
<td>config.name</td>
<td>vixrefl</td>
</tr>
<tr>
<td></td>
<td>output.type</td>
<td>geotiff.argb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(XX=12, 13, 14, 15, 16)</td>
</tr>
<tr>
<td>V47 to V48</td>
<td>vixbt</td>
<td>VIIRS IXX Brightness Temperature (Resolution: 0.01)</td>
</tr>
<tr>
<td></td>
<td>Input.data</td>
<td>VIIRS SVIXX HDF output from C-SDR_SPA > geo</td>
</tr>
<tr>
<td></td>
<td>config.type</td>
<td>standard</td>
</tr>
<tr>
<td></td>
<td>config.name</td>
<td>vixbt</td>
</tr>
<tr>
<td></td>
<td>output.type</td>
<td>geotiff.argb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(XX=04, 05)</td>
</tr>
</tbody>
</table>

SNPP OMPS Imagery

<table>
<thead>
<tr>
<th>O1</th>
<th>uvaerosol</th>
<th>OMPS Ultra Violet Aerosol (Resolution 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input.data</td>
<td>OMPS Total Column Total Ozone HDF output (from OMPSnadir_SPA)</td>
</tr>
<tr>
<td></td>
<td>Config.type</td>
<td>standard</td>
</tr>
<tr>
<td></td>
<td>Config.name</td>
<td>uvaerosol</td>
</tr>
<tr>
<td></td>
<td>Output.type</td>
<td>geotiff.argb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(XX=01, 02, 03)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O2</th>
<th>totalozone</th>
<th>OMPS Total Column Ozone (Resolution 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input.data</td>
<td>OMPS Total Column Total Ozone HDF output (from OMPSnadir_SPA)</td>
</tr>
<tr>
<td></td>
<td>Config.type</td>
<td>standard</td>
</tr>
<tr>
<td></td>
<td>Config.name</td>
<td>totalozone</td>
</tr>
<tr>
<td></td>
<td>Output.type</td>
<td>geotiff.argb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(XX=04, 05)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O3</th>
<th>uvrefl331</th>
<th>OMPS Ultra Violet Reflectance at 331nm (Resolution 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input.data</td>
<td>OMPS Total Column Total Ozone HDF output (from OMPSnadir_SPA)</td>
</tr>
<tr>
<td></td>
<td>Config.type</td>
<td>standard</td>
</tr>
<tr>
<td></td>
<td>Config.name</td>
<td>uvrefl331</td>
</tr>
<tr>
<td></td>
<td>Output.type</td>
<td>geotiff.argb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(XX=04, 05)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O4</th>
<th>ompssso2</th>
<th>OMPS SO2 concentration (Resolution 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input.data</td>
<td>OMPS Total Column Total SO2 NRT HDF output (from OMPSnadir_SPA)</td>
</tr>
<tr>
<td></td>
<td>Config.type</td>
<td>standard</td>
</tr>
<tr>
<td></td>
<td>Config.name</td>
<td>ompssso2</td>
</tr>
<tr>
<td></td>
<td>Output.type</td>
<td>geotiff.argb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(XX=04, 05)</td>
</tr>
</tbody>
</table>

SNPP/NOAA-20 CrIS Imagery

<table>
<thead>
<tr>
<th>C1 to C3</th>
<th>cristbxw (x=s,m,l for shortwave, mediumwave and longwave respectively)</th>
<th>CrIS SDR Shortwave, Mediumwave and Longwave Band Brightness Temperature (Resolution 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input.data</td>
<td>CrIS SCRIS SDR output from C-SDR_SPA > geo <CrIS GCRSO Geolocation output from C-SDR_SPA > h2gout <Path to tif, png or jpeg output image file</td>
</tr>
<tr>
<td></td>
<td>Config.type</td>
<td>standard</td>
</tr>
<tr>
<td></td>
<td>Config.name</td>
<td>cristbxw</td>
</tr>
<tr>
<td></td>
<td>Output.type</td>
<td>geotiff.argb</td>
</tr>
<tr>
<td></td>
<td>(x=s,m,l for shortwave, mediumwave and longwave respectively)</td>
<td>(XX=01, 02, 03)</td>
</tr>
</tbody>
</table>
SNPP/NOAA-20 ATMS Imagery

| A1 to A22 | atmsbtx (x=1 to 22) | ATMS SDR Channel x Brightness Temperature (Resolution 0.05°) (x=1 to 22) | input.data <ATMS SATMS SDR output from C-SDR_SPA >
geom <ATMS GATMO Geolocation output from C-SDR_SPA >
h2gout <Path to tif, png or jpeg output image file>
config.type standard
config.name atmsbtx
output.type <geotiff.argb | jpeg.argb | png.argb>
(x=1 to 22) |

NOTE: The input products for H2G_SPA are available from different SPAs as documented in Table 2. Please refer to the corresponding SPA’s User Guide for documentation on naming conventions and possible download sources for these products.

11.1.1 Legends

When the image products are generated with ‘png.argb’ or ‘jpeg.argb’ set to true (i.e., browse imagery), it enables overlays of legends in image products that represent continuous science parameters. Legends are not generated for RGB imagery (such as MODIS/VIIRS True Color/False Color) and categorical parameters (such as MODIS/VIIRS Fire Mask, MODIS/VIIRS Cloud Phase, MODIS/VIIRS Cloudmask, MODIS/VIIRS Active Fires, VIIRS Suspended Matter Type, and VIIRS Snow Cover).

Pre-generated legends for all continuous and categorical science products are included for reference in the H2G testdata tar file. After untarring the testdata tar file as instructed in section 8.1, the legends will be contained in the SPA/h2g/testdata/legends/ directory. The legends are named according to the convention ‘<H2G-Product-no(s)>,<config.name>.legend.png’. H2G Product numbers and config.names are available from Table 2.

11.1.2 Generating H2G Standard Products

Command line examples to generate standard H2G products from the testscripts directory are provided below.

Example 1.1: MODIS TrueColor 0.01 degree Geotiff (run from the testscripts directory)

```bash
$ ../wrapper/h2g/run \config.type standard \config.name tcolor0_01 \input.data ../testdata/input/MYDcrefl.1km.08085190000.hdf \geo ../testdata/input/MYD03.A2008085.1900.005.2009312103605.hdf \h2gout ../testdata/output/MXDcrefl_TrueColor.GEOG.tif \output.type geotiff.argb
```
Example 1.2: VIIRS SDR Top of Atmosphere True Color 0.01 degree Geotiff
(run from the testscripts/ directory)

$../wrapper/h2g/run \
 config.type standard \
 config.name vtcolor \
 red.data ../testdata/input/SVM05_npp_d20130323_t1851552_e1853194_b07270_c20130329144411503651_noaa_ops.h5 \
 green.data ../testdata/input/SVM04_npp_d20130323_t1851552_e1853194_b07270_c20130329144448698975_noaa_ops.h5 \
 blue.data ../testdata/input/SVM03_npp_d20130323_t1851552_e1853194_b07270_c20130329144447345002_noaa_ops.h5 \
 geo ../testdata/input/GMTCO_npp_d20130323_t1851552_e1853194_b07270_c201303291444438416689_noaa_ops.h5 \
 h2gout ../testdata/output/SVM0X.TOA-TCOLOR.GEOG.tif \
 output.type geotiff.argb

NOTE: Example 1.2 shows how to run H2G when the red, green and blue bands
needed to create an RGB image are in different files.

Example 2: MODIS EVI 0.01 degree Geotiff (run from the testscripts directory)

$../wrapper/h2g/run \
 config.type standard \
 config.name evi \
 input.data ../testdata/input/MYD013.08085185938.hdf \
 geo ../testdata/input/MYD03.08085185938.hdf \
 mask ../testdata/input/MYD014.08085185938.hdf \
 h2gout ../testdata/output/MXD13.EVI.GEOG.tif \
 output.type geotiff.u8cm

A successful execution usually takes some time, so if the execution seems to get
stuck, do not become impatient. If execution fails, you will see an error message
indicating the cause of failure (e.g., a file cannot be found, or a label cannot be
recognized). Correct the problem and run again. The problem can also be identified
using the stdfile* and errfile* log files. Log files are automatically generated within
the directory used for execution.

NOTES:

1. Command line examples for generating all H2G standard outputs are
provided in the run_h2g-standard-outputs.sh file within the testscripts
directory. All command lines are commented. Please uncomment the
desired command line (the product # from Table 2 matches the “Eg #” in the
script) and then type "/run_h2g_standard-outputs.sh” to execute the
command. H2G standard output products are available for comparison in the
testdata/output/h2g_standard_outputs subdirectory.

2. The IMAPP aerosol product may produce insufficient geolocation data at
higher latitudes. H2G would fail to produce correct aerosol image products in
such cases.
3. Please see Appendix C for additional information on standard products, such as: (a) how the products were scaled into 8-bit images; (b) how the masks were used; and (c) how to retrieve actual parameter values from the GeoTIFF images.

11.1.3 Overriding Projection and Resolution of Standard Products

H2G standard products are by default in geographic projection. In order to override this default projection and use any other projection (currently the only other projection is stereographic), you should use the projection and resolution parameter labels on the command line. Note that the geographic projection requires resolution in latitude/longitude degree units, while the stereographic projection requires resolution in meter units. You may also override only the resolution label to get a geographically projected image in a different resolution.

Example 3: MODIS TrueColor Stereographic 5000 meter png (run from the testscripts directory)

```
$../wrapper/h2g/run
   config.type standard \n   config.name tcolor0_01 \n   input.data ../testdata/input/MYDcrefl.1km.08085190000.hdf \n   geo ../testdata/input/MYD03.A2008085.1900.005.2009312103605.hdf \n   h2gout ../testdata/output/MXDcrefl_TrueColor.STEREO.png \n   output.type png.argb \n   projection stereographic resolution 5000 \n   browse_enhance true
```

Example 4: MODIS EVI Stereographic 5000m png (run from the testscripts directory)

```
$../wrapper/h2g/run
   config.type standard \n   config.name evi \n   input.data ../testdata/input/MYD013.08085185938.hdf \n   geo ../testdata/input/MYD03.08085185938.hdf \n   mask ../testdata/input/MYD014.08085185938.hdf \n   h2gout ../testdata/output/MXD13.EVI.STEREO.png \n   output.type png.argb \n   projection stereographic resolution 5000 \n   browse_enhance true
```

Example 5: MODIS EVI Geographic 0.05 degree png browse (run from the testscripts directory)

```
$ ../wrapper/h2g/run
```
config.type standard \
config.name evi \
input.data ../testdata/input/MYD013.08085185938.hdf \
geo ../testdata/input/MYD03.08085185938.hdf \
mask ../testdata/input/MYD014.08085185938.hdf \
h2gout ../testdata/output/MXD13.EVI.GEOG-0.05.png \
output.type png.argb \
browse_enhance true \
resolution 0.05

NOTES:

1. The center of projection for the stereographic projection (for non-subset and non-mosaic images) is automatically selected by H2G at approximately the midpoint of the image.

2. When you override the default projection, be sure to also specify the resolution label along with the projection label. Care should be taken while specifying the resolution, as the resolution units of the geographic (degrees) and stereographic (meters) projections are different.

11.2 Subsetting and Mosaicing

Subsetting is the extraction of a region of interest from an input swath for purposes of creating an output image product. Mosaicing is the stitching of multiple input swaths for purposes of creating a concatenated output image product. In H2G, subsetting and mosaicing use a similar paradigm. To perform these operations users must define a region of interest. This is achieved by specifying an additional set of parameter labels on the command line. The labels ‘centerlat’ and ‘centerlon’, used for both geographic and stereographic projections, specify the center of the output image in latitude and longitude degrees respectively. (For stereographic projections these labels also define the center of projection). The labels ‘height_lat’ and ‘width_lon’, used only for geographic projections, specify the width and height of the image in latitude and longitude degrees. However for stereographic projections, the ‘height_km’ and width_km’ labels are used (instead of the ‘height_lat’ and width_lon’ labels) to specify the vertical and horizontal extents of the output image in kilometers.

Mosaicing is an extension of subsetting. Users need to employ the additional input.datan, geon, maskn, firelocn, red.datan, blue.datan, green.datan (n=1,2,…10) labels as necessary to specify multiple swath datasets to H2G.

NOTE: More command line examples for subsetting and mosaicing can be found in the run_h2g_subset-egs.sh and run_h2g_mosaic-egs.sh scripts in testscripts/. All command lines are commented. Uncomment the desired command line and then type $./run_h2g_subset-egs.sh or $./run_h2g_mosaic-egs.sh to execute the
command. H2G subsetted/mosaiced output products are available for comparison in the testdata/output/h2g_subset_mosaic_examples subdirectory.

NOTE: Users can provide up to 10 swaths for mosaicing using the input.data, geo, maskn, firelocn, red.datan, blue.datan, green.datan labels.

Example 6: Subsetting MODIS TrueColor Geographic 0.01 degree tif (run from the testscripts directory)

```bash
$../wrapper/h2g/run
config.type standard config.name tcolor0_01
input.data ../testdata/input/MYDcrefl.1km.08085190000.hdf
geo ../testdata/input/MYD03.A2008085.1900.005.2009312103605.hdf
h2gout ../testdata/output/MXDcrefl_TrueColor.GEOG.SUBSET.tif
output.type geotiff.argb
centerlat 45.0 centerlon -95.0 height_lat 20.0 width_lon 20.0
```

Example 7: Subsetting MODIS Cloudtop Pressure Stereographic 5000m jpg (run from the testscripts/ directory)

```bash
$../wrapper/h2g/run
config.type standard config.name cloudtop-ctp-c6
input.data ../testdata/input/CLOUDTOP.10060152500.hdf
geo ../testdata/input/MOD03.A2010060.1525.005.2010264155619.hdf
h2gout ../testdata/output/CLOUDTOP.CTP.STEREO.SUBSET.jpg
output.type jpeg.argb
projection stereographic resolution 5000
centerlat 60.0 centerlon -60.0 height_km 2000 width_km 2000
```

Example 8: Mosaicing VIIRS Top-of-Atmosphere TrueColor Stereographic 750m tif (run from the testscripts/ directory)

```bash
$../wrapper/h2g/run config.type standard config.name vtcolor
red.data ../testdata/input/SVM05_npp_d20120925_t1804560_e1817535.h5
green.data ../testdata/input/SVM04_npp_d20120925_t1804560_e1817535.h5
blue.data ../testdata/input/SVM03_npp_d20120925_t1804560_e1817535.h5
geo ../testdata/input/GMTCO_npp_d20120925_t1804560_e1817535.h5
red.data2 ../testdata/input/SVM05_npp_d20130323_t1851552_e1853194_b07270_c2013032914441150351_noaa_ops.h5
green.data2 ../testdata/input/SVM04_npp_d20130323_t1851552_e1853194_b07270_c2013032914444869875_noaa_ops.h5
blue.data2 ../testdata/input/SVM03_npp_d20130323_t1851552_e1853194_b07270_c20130329144447345002_noaa_ops.h5
geo2 ../testdata/input/GMTCO_npp_d20130323_t1851552_e1853194_b07270_c2013032914444869875_noaa_ops.h5
h2gout ../testdata/output/SVM0X.TOA-TCOLOR.STEREO.MOSAIC.tif
output.type geotiff.argb
projection stereographic resolution 750
centerlat 38.99 centerlon -76.85
height_km 6000 width_km 6000
```

Example 9: Mosaicing MODIS TrueColor Fire Geographic 0.05 degree png (run
from the testscripts/ directory)

$../wrapper/h2g/run config.type standard config.name tcolorfire0_01 \ input.data ../testdata/input/MODcrefl.1km.14247170632.hdf \ geo ../testdata/input/MOD03.14247170632.hdf \ input.data2 ../testdata/input/MYDcrefl.1km.08085190000.hdf \ geo2 ../testdata/input/MYD03.A2008085.1900.005.2009312103605.hdf \ fireloc2 ../testdata/input/MYD14.08085190000.txt \ h2gout ../testdata/output/MXDcrefl_TrueColorFire.GEOG.MOSAIC.png \ output.type png.argb \ resolution 0.05 \ centerlat 38.99 centerlon -76.85 \ height_lat 45 width_lon 45
Installation of this SPA in IPOPP mode will make the SPA services listed in Table A-1 available to IPOPP. These SPA services along with any other prerequisite SPA services (also listed in Table A-1) will need to be enabled to allow IPOPP to automate production of the H2G image data products. The SPAs containing the prerequisite SPA services listed in Table A-1 can be downloaded from the DRL Web Portal, in case they are not already available in your IPOPP installation. Details about these other SPAs are available in the respective SPA User’s Guides. Please refer to the IPOPP User’s Guide for instructions on how to install an SPA in IPOPP and enable the corresponding SPA services.

Table A.1. SPA Services

<table>
<thead>
<tr>
<th>H2GP product #</th>
<th>SPA services for this SPA</th>
<th>Data Products produced</th>
<th>Output Destination</th>
<th>Prerequisite SPA services (SPA in which they are available)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>ndvi-geotiff</td>
<td>MODIS NDVI geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqua>/modis/level2/M<O</td>
</tr>
<tr>
<td>M2</td>
<td>evi-geotiff</td>
<td>MODIS EVI geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqua>/modis/level2/M<O</td>
</tr>
<tr>
<td>M3</td>
<td>lst-geotiff</td>
<td>MODIS LST geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqua>/modis/level2/LST.yyDDDhhmms.s.tif</td>
</tr>
<tr>
<td>M4</td>
<td>fire-geotiff</td>
<td>MODIS Fire Mask geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqua>/modis/level2/FIRE.tif</td>
</tr>
<tr>
<td>M5</td>
<td>sst-geotiff</td>
<td>MODIS Sea Surface Temperature geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqu>_modis/level2/SST.yyDDhhmms.s.tif</td>
</tr>
<tr>
<td>M6</td>
<td>chlor_a-geotiff</td>
<td>MODIS Chlorophyll-a concentration geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqu>_modis/level2/CHLOR_A.yyDDhhmms.tt</td>
</tr>
<tr>
<td>M8, M9</td>
<td>aerosols-geotiff</td>
<td>MODIS Aerosol Optical Depth Combined (Dark Target and Deep Blue)</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqu>_modis/level2/AEROSOL.yyDDhhmms.AOD.tif</td>
</tr>
<tr>
<td>M10</td>
<td>irphase-geotiff</td>
<td>MODIS Cloud Phase geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqu>_modis/level2/CLOUDTOP.yyDDhhmms.IRPHASE.tif</td>
</tr>
<tr>
<td>M11</td>
<td>ctp-geotiff</td>
<td>MODIS Cloudtop Pressure geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqu>_modis/level2/CLOUDTOP.yyDDhhmms.CTP.tif</td>
</tr>
<tr>
<td>M12</td>
<td>atmprofile-geotiff</td>
<td>MODIS Total Precipitable Water geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqu>_modis/level2/PROFILES.yyDDhhmms.TPW.tif</td>
</tr>
<tr>
<td>M13</td>
<td>cloudmask-geotiff</td>
<td>MODIS Cloudmask geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqu>_modis/level2/CLOUDMASK.yyDDhhmms.tif</td>
</tr>
<tr>
<td>M14</td>
<td>creflrgb-geotiff</td>
<td>MODIS True Color from corrected reflectances</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqu>_modis/level2/M=O</td>
</tr>
<tr>
<td>M15</td>
<td>creflrgbfire-geotiff</td>
<td>MODIS True Color from corrected reflectances</td>
<td>$HOME/drl/data/pub/gsfcdata/<terra</td>
<td>aqu>_modis/level2/M=O</td>
</tr>
</tbody>
</table>
| V1 | vtoatcolor-geotiff | VIIRS Top of Atmosphere True Color geotiff | For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level1/NPP_TCOLOR_SRDR.yyDDDhmmss.tif
For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level1/J01_SVM0X.dyyyyMMDD_thhmmssS_ehhmmssS_TOA-TCOLOR.tif |
| V4 | vcviirs-geotiff | VIIRS True Color geotiff from CVIIRS Corrected Reflectances | For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level2/NPP_CVIIRS_S_L2.yyDDDhmmss_TCOLOR.h5.tif
For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/J01_CVIIRS_SM.dyyyyMMDD_tthmmssS_ehhmmsssS_CREFL-TCOLOR.tif |
| V6 | vimgmfcolor-geotiff | VIIRS False Color tiff from GTMImagery EDR M1, M4, M9 Band Reflectances | For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level2/NPP_imageyyDDDhmmss_MFCOLOR.tif
For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/J01_VM0XO.dyyyyMMDD_thh |

H2G SPA Services for SNPP/NOAA-20 VIIRS Imagery³

1. b/gsfcdata/terra/aqua/-/modis/level2/M<q>Y>Dcrefl_TrueColorFire.yyDDDhmmss.tif
2. l0l1terra (MODISL1DB_SPA) l0l1aqua (MODISL1DB_SPA) l1atob (MODISL1DB_SPA)crefl (CREFL_SPA) MOD14 (MOD14_SPA)

V1 vtoatcolor-geotiff

VIIRS Top of Atmosphere True Color geotiff

For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level1/NPP_TCOLOR_SRDR.yyDDDhmmss.tif
For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level1/J01_SVM0X.dyyyyMMDD_thhmmssS_ehhmmssS_TOA-TCOLOR.tif

V4 vcviirs-geotiff

VIIRS True Color geotiff from CVIIRS Corrected Reflectances

For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level2/NPP_CVIIRS_S_L2.yyDDDhmmss_TCOLOR.h5.tif
For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/J01_CVIIRS_SM.dyyyyMMDD_tthmmssS_ehhmmsssS_CREFL-TCOLOR.tif

V6 vimgmfcolor-geotiff

VIIRS False Color tiff from GTMImagery EDR M1, M4, M9 Band Reflectances

For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level2/NPP_imageyyDDDhmmss_MFCOLOR.tif
For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/J01_VM0XO.dyyyyMMDD_thh
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V7</td>
<td>vimgifcolor-geotiff</td>
<td>VIIRS False Color tiff from GTMImagery EDR I1, I2, I3 Band Reflectances</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level2/NPP_image.ry.yyDDDhhmmss.IFCOLOR.tif²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/J01_VIXBO.dyyyyMMDD_thhmmssS_ehhmmssS.MFCOLOR.tif²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIIRS_C-SDR (C-SDR_SPA) GTM_IBand (GTMIMAGERY_SPA)</td>
</tr>
<tr>
<td>V8</td>
<td>vimgncc-geotiff</td>
<td>VIIRS NCC Albedo geotiff from GTMImagery NCC EDR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level2/NPP_image.ry.yyDDDhhmmss.NCCALBEDO.tif¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/J01_VNCCO.dyyyyMMDD_thhmmssS_ehhmmssS.NCCALBEDO.tif²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIIRS_C-SDR (C-SDR_SPA) GTM_NCCBand (GTMIMAGERY_SPA)</td>
</tr>
<tr>
<td>V9</td>
<td>viirsaf-geotiff</td>
<td>VIIRS Fire Mask geotiff from VIIRS-AF_SPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level2/NPP_VAF_L2.yyDDDhhmmss.tif¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/J01_VAF.dyyyyMMDD_thhmmssS_ehhmmssS.FIRE.tif²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIIRS_C-SDR (C-SDR_SPA) VIIRS-AF (VIIRS-AF_SPA)</td>
</tr>
<tr>
<td>V10</td>
<td>vfire375-geotiff</td>
<td>VIIRS Fire Mask geotiff from VFIRE375_SPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level2/NPP_VF375_L2.yyDDDhhmmss.tif¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/J01_VF375.dyyyyMMDD_thhmmssS_ehhmmssS.FIRE.tif²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIIRS_C-SDR (C-SDR_SPA) VFIRE375 (VFIRE375_SPA)</td>
</tr>
<tr>
<td>V11</td>
<td>vciirsfire-geotiff</td>
<td>VIIRS True Color geotiff with fire pixel overlays</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>V12</td>
<td>vcmmaskh5-geotiff</td>
<td>VIIRS Cloud Mask geotiff</td>
</tr>
<tr>
<td>V13</td>
<td>vcmphaseh5-geotiff</td>
<td>VIIRS Cloud Phase geotiff</td>
</tr>
<tr>
<td>Page</td>
<td>Geotiff</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>V14</td>
<td>vaoth5d-geotiff</td>
<td>VIIRS Aerosol Optical Thickness at 550nm geotiff</td>
</tr>
<tr>
<td>V15</td>
<td>vapsh5d-geotiff</td>
<td>VIIRS Aerosol Particle Size geotiff</td>
</tr>
<tr>
<td>V16</td>
<td>vsumh5-geotiff</td>
<td>VIIRS Suspended Matter Type geotiff</td>
</tr>
<tr>
<td>V17</td>
<td>vctth5d-geotiff</td>
<td>VIIRS Cloud Top Temperature geotiff</td>
</tr>
</tbody>
</table>

\text{VIIRS C-SDR (C-SDR_SPA)} CloudMask (CLOUDMASK_SPA) Aerosol (AEROSOL_SPA)
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V18</td>
<td>vcoth5d-geotiff</td>
<td>VIIRS Cloud Optical Thickness geotiff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs уровни2/NPP_COPI P_L2.yyDDDhhmmsS_ehmmmsS.COT.tif</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs уровни2/J01_IVCOP.dyyyyMMDD_thhmmmsS_ehmmmsS_EPS.tif</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIIRS_C-SDR (C-SDR_SPA) CloudMask (CLOUDMASK_SPA) COP (COP_SPA)</td>
</tr>
<tr>
<td>V19</td>
<td>vepsh5d-geotiff</td>
<td>VIIRS Cloud Effective Particle Size geotiff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs уровни2/NPP_COPI P_L2.yyDDDhhmmsS.EPS.tif</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs уровни2/J01_IVCOP.dyyyyMMDD_thhmmmsS_ehmmmsS_EPS.tif</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIIRS_C-SDR (C-SDR_SPA) CloudMask (CLOUDMASK_SPA) COP (COP_SPA)</td>
</tr>
<tr>
<td>V20, V21</td>
<td>vsnowh5-geotiff</td>
<td>VIIRS Snow Cover Binary Map</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs уровни2/NPP_VSCM_L2.yyDDDhhmmsS.SNOWCOVER.tif</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs уровни2/J01_VSCMO.dyyyyMMDD_thhmmmsS_ehmmmsS_SNOWCOVER.tif</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VIIRS_C-SDR (C-SDR_SPA) CloudMask (CLOUDMASK_SPA) Aerosol (AEROSOL_SPA) SnowCov (SNOWCOV_SPA)</td>
</tr>
</tbody>
</table>
| V22 | vsurfreflh5d-geotiff | VIIRS Land Surface Reflectance True Color geotiff | For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level2/NPP_SRFL_MIP_L2.yyDDhhmmss.SREFL_TCOLOR.tif^1
For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/J01_VISR_dyyyMMDD_thhhmmssS.ehhmmssS.SREFL_TCOLOR.tif^2 |
| V23 | vndvih5-geotiff | VIIRS NDVI geotiff | For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level2/NPP_VRVI_L2.yyDDhhmmss.NDVI.tif^1
For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/J01_VIVIO_dyyyMMDD_thhhmmssS.ehhmmssS.NDVI.tif^2 |
| V24 | vevih5-geotiff | VIIRS EVI geotiff | For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level2/NPP_VRVI_L2.yyDDhhmmss.EVI.tif^1 |

VIIRS Cloud Mask (CLOUDMASK_SPA)
Active Fires (VIIRS_AF_SPA)
Aerosol (AEROSOL_SPA)
Surf Reflect (SURFREFLECT_SPA)
Veg Index (VEGINDEX_SPA)
<table>
<thead>
<tr>
<th>V25</th>
<th>vlsth5-geotiff</th>
<th>VIIRS Land Surface Temperature geotiff</th>
<th>For SNPP: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/NPP_VLST_L2.yyDDDhmmsss.s.tiff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>VIIRS_C-SDR (C-SDR_SPA) ActiveFires (VIIRS_AF_SPA) CloudMask (CLOUDMASK_SPA) LST (LST_SPA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V26</th>
<th>virssst-geotiff</th>
<th>VIIRS Sea Surface Temperature (from l2gen_SPA) geotiff</th>
<th>For SNPP: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/NPP_VIIRS_SST_L2.yyDDDhmmsss.s.tiff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>VIIRS_C-SDR (C-SDR_SPA) l2gen_viirs-sst (L2GEN_SPA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V27</th>
<th>viirschlor-geotiff</th>
<th>VIIRS Chlorophyll Concentration (from l2gen) geotiff</th>
<th>For SNPP: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level2/NPP_VIIRS_CHLOR_L2.yyDDDhmmsss.s.tiff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>VIIRS_C-SDR (C-SDR_SPA) l2gen_viirs-oc (L2GEN_SPA)</td>
</tr>
<tr>
<td>V39</td>
<td>vm12h5-geotiff</td>
<td>VIIRS M12 Brightness Temperature geotiff</td>
<td>For SNPP: $HOME/drl/data/pub/gsfcdata/npp/viirs/level1/NPP_M12BT_SDR.yyDDDhmmss.tif [1]
 For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/viirs/level1/J01_SVM12_dyyyyMMDD_thhmmssS_ehhmmssS_M12BT.tif [2]</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>ompsaot-geotiff</td>
<td>OMPS Ultra Violet Aerosol geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/npp/omps/level2/OMPS_AEROSOL_L2.yyDDDhmmss.tif [1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>ompstzone-geotiff</td>
<td>OMPS Total Column Ozone geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/npp/omps/level2/OMPS_OZONE_L2.yyDDDhmmss.tif [1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3</td>
<td>ompsrefl331-geotiff</td>
<td>OMPS Ultra Violet Reflectance at 331nm geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/npp/omps/level2/OMPS_REF331_L2.yyDDDhmmss.tif [1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4</td>
<td>ompsso2-geotiff</td>
<td>OMPS SO2 concentration geotiff</td>
<td>$HOME/drl/data/pub/gsfcdata/npp/omps/level2/OMPS_SO2_L2.yyDDDhmmss.tif [1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H2G SPA Services for SNPP OMPS Imagery

O1	ompsaot-geotiff	OMPS Ultra Violet Aerosol geotiff	$HOME/drl/data/pub/gsfcdata/npp/omps/level2/OMPS_AEROSOL_L2.yyDDDhmmss.tif \[1\]	OMPSnadir (OMPSNADIR_SPA)
O2	ompstzone-geotiff	OMPS Total Column Ozone geotiff	$HOME/drl/data/pub/gsfcdata/npp/omps/level2/OMPS_OZONE_L2.yyDDDhmmss.tif \[1\]	OMPSnadir (OMPSNADIR_SPA)
O3	ompsrefl331-geotiff	OMPS Ultra Violet Reflectance at 331nm geotiff	$HOME/drl/data/pub/gsfcdata/npp/omps/level2/OMPS_REF331_L2.yyDDDhmmss.tif \[1\]	OMPSnadir (OMPSNADIR_SPA)
O4	ompsso2-geotiff	OMPS SO2 concentration geotiff	$HOME/drl/data/pub/gsfcdata/npp/omps/level2/OMPS_SO2_L2.yyDDDhmmss.tif \[1\]	OMPSnadir (OMPSNADIR_SPA)

H2G SPA Services for SNPP/NOAA-20 ATMS Imagery

<table>
<thead>
<tr>
<th>A1 to A22</th>
<th>ATMS-SDR-geotiff</th>
<th>ATMS SDR Channel x Brightness Temperature geotiffs (x=1 to 22)</th>
<th>For SNPP: $HOME/drl/data/pub/gsfcdata/npp/atms/level1/NPP_ATMS_SBT_CHx.yyDDDhmmss.tif [1]
 For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/atms/level1/J01_SAT</th>
<th>ATMS_C-SDR (C-SDR_SPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
H2G SPA Services for SNPP/NOAA-20 CrIS Imagery

| C1, C2, C3 | CrIS-SDR-geotiff | CrIS SDR Shortwave, Mediumwave and Longwave Band Brightness Temperature geotiffs | For SNPP: $HOME/drl/data/pub/gsfcdata/npp/cris/level1/NPP_CrISBT_xW.yyyDDDDhhmmss.s.tif\(^1\)
For NOAA-20: $HOME/drl/data/pub/gsfcdata/jpss1/cris/level1/J01_SCRI_S.dyywwwwmmSS_ehmmss.S.BT-xW.tif
\((x=S,M,L \text{ for Shortwave, Mediumwave and Longwave respectively})\) | CRIS_C-SDR (C-SDR_SPA) |

\(^1\)yy, DDD, hh, mm, ss represents the 2-digit year, day-of-the-year, hour, minute, and second respectively.

\(^2\)Where yyyy, MM, DD represents the year, month and day of month for the start of the swath; the first hh, mm, ss, S represents the hour, minutes, seconds and 10th of a second for the start of the swath; and the second hh, mm, ss, S represents the end time of the swath.

\(^3\)SPA Services for Terra/Aqua MODIS Imagery are available on the “EOS” tab of the IPOPP Dashboard. SPA Services for SNPP and NOAA-20 VIIRS Imagery are available on the “SNPP-VIIRS” and “JPSS-1-VIIRS” tabs of the IPOPP Dashboard respectively. SPA Services for SNPP and NOAA-20 ATMS/CrIS/OMPS Imagery are available on the “SNPP-ATMS/CrIS/OMPS” and “JPSS-1-ATMS/CrIS/OMPS” tabs of the IPOPP Dashboard respectively.
Appendix B
Modifying Maximum Java Heap Size

To increase/decrease maximum Java heap size, cd into algorithm/bin and open the file h2g.sh. Edit the line '-Xmx2g' to the required value. For example, to decrease maximum Java heap size to 1G, edit it to '-Xmx1g'. To increase it to 4G, edit it to '-Xmx4g'.

CAUTION: Decreasing Java heap size may cause some high-resolution image generations to fail.
Appendix C
H2G Standard Product Descriptions

This appendix describes the scaling used to convert Scientific Dataset (SDS) values in the SPA HDF products into 8-bit values in the standard GeoTIFF products. Pseudocodes for converting the GeoTIFF values back into actual parameter values are also provided. Please note that the parameter values obtained by inverse scaling GeoTIFF values will not be exactly equal to the parameter values obtained from actual SDS values (from the HDF products), but they should be close. Use of 8-bit integers in our GeoTIFF products may cause loss of precision. Further, values below and above the SDS data range being scaled into 1-255 are set to 1 and 255 respectively in the GeoTIFF output. Interpolation used during re-projection of swath data may also be a source of difference. The descriptions are organized by H2G product numbers as defined in Table 2.

M1/M2. MODIS NDVI/EVI

HDF SDS: NDVI/EVI (generated by NDVIEVI_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from -1000 to 10000 are scaled linearly to 1-255 in GeoTIFF output. Fill values (-999) are set to 0.

```matlab
if hdf_value = -999
gtiff_value=0
elseif pixel has CLOUD or WATER (identified using Active Fire HDF product)
gtiff_value=0
else
    gtiff_value=1+round((254/11000)*(hdf_value+1000)) //scale from 1 to 255
    if(gtiff_value<1)
        gtiff_value=1
    endif
    if(gtiff_value>255)
        gtiff_value=255
    endif
end
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: dimensionless; range: -0.1 to 1.0):

```matlab
if gtiff_value>0
    hdf_value=[(gtiff_value-1)*11000/254]-1000   //scale 1-255 to -1000 to 10000
    parameter_value=hdf_value*0.0001   //apply scaling and offset factors
else //gtiff_value=0
    hdf_value=-999
    parameter_value=NO_RETRIEVAL
end
```

H2G_2.5_SPA_1.4 Page C-1 March 2019
M3. MODIS Land Surface Temperature

HDF SDS: LST (generated by MODLST_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 2300-3400 (equivalent to 230K-340K) are scaled linearly to 1-255 in GeoTIFF output. Fill values (0) are set to 0.

```plaintext
if hdf_value = 0
    geotiff_value=0
elseif (pixel has CLOUD or WATER) (identified using Active Fire HDF product)
    geotiff_value=0
else
    geotiff_value=1+round((254/1100)*(hdf_value-2300)) //scale from 1 to 255
    if(geotiff_value<1)
        geotiff_value=1
    endif
    if(geotiff_value>255)
        geotiff_value=255
    endif
endif
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: K; range: 230K to 340K):

```plaintext
if geotiff_value>0
    hdf_value=[(geotiff_value-1)*1100/254]+2300   //scale 1-255 to 2300-3400
    parameter_value=hdf_value*0.1   //apply scaling and offset factors
else //geotiff_value=0
    hdf_value=0
    parameter_value=NO_RETRIEVAL
end
```

M4. MODIS FIRE

HDF SDS: fire mask (generated by MOD14_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values:

```plaintext
geotiff_value=hdf_value
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter flags (units: dimensionless):

```plaintext
hdf_value=geotiff_value
(Flag interpretation: 0- missing, 1- not processed, 2- not processed, 3- water, 4- cloud, 5- non-
```
fire, 6-unknown, 7- low confidence fire, 8- nominal confidence fire, 9- high confidence fire)

M5. MODIS Sea Surface Temperature

HDF SDS: sst (generated by L2GEN_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from -400 to 9000 (equivalent to -2°C to 45°C) are scaled linearly to 1-255 in GeoTIFF output. Fill values (-32767) are set to 0.

```plaintext
if hdf_value = -32767
    geotiff_value=0
else qual_sst>=3 (identified using qual_sst sds)
    geotiff_value=0
else
    geotiff_value=1+round((254/9400)*(hdf_value+400)) //scale from 1 to 255
    if(geotiff_value<1)
        geotiff_value=1
    endif
    if(geotiff_value>255)
        geotiff_value=255
    endif
endif
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: °C; range: -2°C to 45°C):

```plaintext
if geotiff_value>0
    hdf_value=[(geotiff_value-1)*9400/254]-400  //scale 1-255 to -400 to 9000
    parameter_value=hdf_value*0.005  //apply scaling and offset factors as specified in the HDF SDS
else //geotiff_value=0
    hdf_value=-32767
    parameter_value=NO_RETRIEVAL
end
```

M6. MODIS Chlorophyll-a Concentration

HDF SDS: chlor_a (generated by L2GEN_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values:

```plaintext
if(hdf_value=-32767 or l2flag = Chl_warn or l2flag=Chl_fail)
    geotiff_value=0
else
    if(hdf_value<0.01)
        hdf_value=0.01
```
endif
if(hdf_value>100)
 hdf_value=100
endif
geotiff_value= round(128+(63.5*(\log_{10}(hdf_value))
end

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: mg/m^3; range: 0.01 to 100):

if (geotiff_value=0)
 hdf_value=-1
 parameter_value=NO_RETRIEVAL
else
 hdf_value=10^[((geotiff_value-128)/63.5]
 parameter_value=hdf_value
end

M7/M8/M9. MODIS Aerosol Optical Depth

HDF SDS names:
Optical_Depth_Land_And_Ocean (from the MOD04 or MOD04 3km product generated by IMAPP_SPA)
AOD_550_Dark_Target_Deep_Blue_Combined (from the MOD04 product generated by IMAPP_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 0-5000 are scaled linearly to 1-255 in GeoTIFF output. Fill values (-9999) in SDS are set to 0 in geotiff.

if hdf_value = -9999
 geotiff_value=0
else
 geotiff_value=1+round((254/5000)*hdf_value) //scale from 1 to 255
 if(geotiff_value<1)
 geotiff_value=1
 endif
 if(geotiff_value>255)
 geotiff_value=255
 endif
endif

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: dimensionless; range: 0-5):

if geotiff_value>0
 hdf_value=(geotiff_value-1)*5000/254 //scale 1-255 to 0-5000
 parameter_value=hdf_value*0.001 //apply scaling/offset factors
else //geotiff_value=0

M10. MODIS Cloud Phase

HDF SDS: Cloud_Phase_Infrared (generated by IMAPP_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 0 to 6 are scaled to 1-7 in GeoTIFF output. Fill Values (127) is set to 0.

```
if hdf_value=127
  geotiff_value=0
else
  geotiff_value=1+hdf_value
end
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter flags (units: dimensionless):

```
if(geotiff_value>0)
  hdf_value=geotiff_value-1
  parameter_flag=hdf_value  (clear = 0; water = 1 or 5; ice = 2 or 4; mixed = 3; uncertain = 6)
else
  hdf_value=127
  parameter_flag=NO_RETRIEVAL
end
```

M11. MODIS Cloud Top Pressure

HDF SDS: Cloud_Top_Pressure (generated by IMAPP_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 10-11000 are scaled linearly to 1-255 in GeoTIFF output. Fill values (-32768) are set to 0.

```
if hdf_value = -32768
  geotiff_value=0
else
  geotiff_value=1+round((254/10990)*(hdf_value-10)) //scale from 1 to 255
  if(geotiff_value<1)
    geotiff_value=1
  endif
  if(geotiff_value>255)
    geotiff_value=255
  endif
endif
```
Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: hPa; range: 1-1100 hPa):

 if geotiff_value>0
 hdf_value=[(geotiff_value-1)*10990/254]+10 //scale 1-255 to 10-11000
 parameter_value=hdf_value*0.1 //apply scaling and offset
 else //geotiff_value=0
 hdf_value=-32768
 parameter_value=NO_RETRIEVAL
 end

M12. MODIS Total Precipitable Water

HDF SDS: Water_Vapor (generated by IMAPP_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 0-20000 are scaled linearly to 1-255 in GeoTIFF output. Fill values (-9999) are set to 0.

 if hdf_value = -9999
 geotiff_value=0
 else
 geotiff_value=1+round((254/20000)*hdf_value) //scale from 1 to 255
 if(geotiff_value<1)
 geotiff_value=1
 endif
 if(geotiff_value>255)
 geotiff_value=255
 endif
 endif

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: cm; range: 0-20 cm):

 if geotiff_value>0
 hdf_value=(geotiff_value-1)*20000/254 //scale 1-255 to 0-20000
 parameter_value=hdf_value*0.001 //apply scaling and offset factors as specified in the HDF SDS
 else //geotiff_value=0
 hdf_value=-9999
 parameter_value=NO_RETRIEVAL
 end

M13. MODIS Cloudmask

HDF SDS: Cloud_Mask (generated by IMAPP_SPA)
Scaling used to convert HDF SDS values to GeoTIFF values:

Retrieve bit 0 from byte_1 in HDF SDS
if (bit0 = 0)
 geotiff_value=0
else
 Retrieve bits 2 and 1 (bit21) from byte_1 in HDF SDS
 if (bit21=00) //Cloudy
 geotiff_value=1
 elseif (bit21=01) //Uncertain
 geotiff_value=2
 elseif (bit21=10) //Probably Clear
 geotiff_value=3
 elseif (bit21=11) //Clear
 geotiff_value=4
 endif
endif
endif

Pseudo-code to convert GeoTIFF values to actual parameter flags (units: dimensionless):

if (geotiff_value=1)
 parameterflag=CLOUDY
elseif (geotiff_value=2)
 parameterflag=UNCERTAIN
elseif (geotiff_value=3)
 parameterflag=PROBABLY_CLEAR
elseif (geotiff_value=4)
 parameterflag=CLEAR
elseif (geotiff_value=0)
 parameterflag=NO_RETRIEVAL
endif

M14. MODIS True Color Images

MODIS corrected reflectances in bands 1, 4 and 3 generated by CREFL_SPA are used to create the CREFL true color images. The scalings used on the red, green and blue bands to create aesthetically pleasing true color images were inspired by Gumley, Descloitres and Schmaltz (2007), "Creating Reprojected True Color MODIS Images: A Tutorial."

M15. MODIS True Color Images with Fire Pixel Overlays

MODIS True Color Images (as described above) are enhanced with fire pixels.
V1. VIIRS Top of Atmosphere True Color

VIIRS Top of Atmosphere (TOA) reflectances in bands M5, M4 and M3 generated by C-SDR are used to create the VIIRS TOA true color images. The scalings used were inspired by Gumley, Descloi tres and Schmaltz (2007), "Creating Reprojected True Color MODIS Images: A Tutorial."

V2. VIIRS DNB Radiance (Night time)

HDF SDS: /All_Data/VIIRS-DNB-SDR_All/Radiance (in SVDNB product)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 0 to 1E-7 (W/(cm^2 sr)) are scaled linearly to 1-255 in GeoTIFF output. Fill values (-999.9 to -999.0) are set to 0.

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: W/(cm^2 sr); range: 0 to 0.0000001):

if geotiff_value>0
 hdf_value=[(geotiff_value-1)* 0.0000001/254] //scale 1-255 to 0 to 0.0000001
 parameter_value=hdf_value
else //geotiff_value=0
 hdf_value=FILL_VALUE
 parameter_value=NO_RETRIEVAL
end

V3. VIIRS DNB Radiance (Day time)

HDF SDS: /All_Data/VIIRS-DNB-SDR_All/Radiance (in SVDNB product)
Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 0-0.01 (W/(cm^2 sr)) are scaled linearly to 1-255 in GeoTIFF output. Fill values (-999.9 to -999.0) are set to 0.

```python
if hdf_value >= -999.9 and hdf_value <= -999.0
    geotiff_value = 0
else
    geotiff_value = 1 + round((254/0.01)*(hdf_value))  # scale from 1 to 255
    if (geotiff_value < 1)
        geotiff_value = 1
    endif
    if (geotiff_value > 255)
        geotiff_value = 255
    endif
endif
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: W/(cm^2 sr); range: 0 to 0.01):

```python
if geotiff_value > 0
    hdf_value = ((geotiff_value - 1)*0.01/254)  # scale 1-255 to 0 to 0.01
    parameter_value = hdf_value
else // geotiff_value = 0
    hdf_value = FILL_VALUE
    parameter_value = NO_RETRIEVAL
end
```

V4/V5. VIIRS CVIIRS True Color

VIIRS corrected reflectances in bands M5 (or I1), M4 and M3 generated by CVIIRS_SPA are used to create the VIIRS true color images. The scalings used were inspired by Gumley, Descloitres and Schmaltz (2007), "Creating Reprojected True Color MODIS Images: A Tutorial."

V6. VIIRS Imagery M Band False Color

VIIRS imagery EDRs for bands M1, M4 and M9 generated by the GTMImagery_SPA are used to create the VIIRS false color images.

V7. VIIRS Imagery I Band False Color

VIIRS imagery EDRs for bands I1, I2 and I3 generated by the GTMImagery_SPA are used to create the VIIRS false color images.
V8. VIIRS Imagery NCC Albedo

HDF SDS: /All_Data/VIIRS-NCC-EDR_All/Albedo (in VNCCO product generated by GTMImagery_SPA).

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 0-13105 (equivalent to 0 - 1) are scaled linearly to 1-255 in GeoTIFF output. Fill values (65528 to 65535) are set to 0.

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (unitless, range: 0 to 1):

```python
if hdf_value >= 65528 and hdf_value<=65535
    geotiff_value=0
else
    geotiff_value=1+round((254/13105)*(hdf_value)) //scale from 1 to 255
    if(geotiff_value<1)
        geotiff_value=1
    endif
    if(geotiff_value>255)
        geotiff_value=255
    endif
endif
```

V9. VIIRS-AF Fire Mask

HDF SDS: fire mask (generated by VIIRS-AF_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values:

```python
geotiff_value=hdf_value
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter flags (units: dimensionless):

```python
hdf_value=geotiff_value
(Flag interpretation: 0– missing, 1- not processed, 2- not processed, 3- water, 4- cloud, 5-
fire, 6- unknown, 7- low confidence fire, 8- nominal confidence fire, 9- high confidence fire)

**V10. VFIRE375 Fire Mask**

**HDF SDS:** fire mask (generated by VFIRE375_SPA)

**Scaling used to convert HDF SDS values to GeoTIFF values:**

\[
\text{geotiff\_value} = \text{hdf\_value}
\]

**Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter flags (units: dimensionless):**

\[
\text{hdf\_value} = \text{geotiff\_value}
\]

(Flag interpretation: 0- missing, 1- not processed, 2- not processed, 3- water, 4- cloud, 5- non-fire, 6- unknown, 7- low confidence fire, 8- nominal confidence fire, 9- high confidence fire)

**V11. VIIRS CVIIRS True Color with Fire Pixel Overlays**

VIIRS true color images generated from CVIIRS (as described above) are enhanced with fire pixel overlays.

**V12. VIIRS Cloud Mask**

**HDF SDS:** /All_Data/VIIRS-CM-IP_All/QF1_VIIRSCMIP (from IICMP product generated by CLOUDMASK_SPA)

**Scaling used to convert HDF SDS values to GeoTIFF values:**

```
Retrieve bit 0 and 1 (bit01) in HDF SDS
if (bit01 = 0)
 geotiff_value=0
else
 Retrieve bits 2 and 3 (bit23) in HDF SDS
 if (bit23=00) //Clear
 geotiff_value=1
 elseif (bit21=01) //Probably Clear
 geotiff_value=2
 elseif (bit21=10) //Probably Cloudy
 geotiff_value=3
 elseif (bit21=11) //Confident Cloudy
 geotiff_value=4
 endif
endif
```

**Pseudo-code to convert GeoTIFF values to actual parameter flags (units: dimensionless):**
if (geotiff_value=1)
    parameterflag=CLEAR
elseif (geotiff_value=2)
    parameterflag=PROBABLY_CLEAR
elseif (geotiff_value=3)
    parameterflag=PROBABLY_CLOUDY
elseif (geotiff_value=4)
    parameterflag=CONFIDENT_CLOUDY
elseif (geotiff_value=0)
    parameterflag=NO_RETRIEVAL
endif

V13. VIIRS Cloud Phase

HDF SDS: /All_Data/VIIRS-CM-IP_All/QF6_VIIRSCMIP (from IICMP product generated by CLOUDMASK_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values:

Retrieve bit 0, 1 and 2 (bit012) in HDF SDS
if (bit012 = 000)
    geotiff_value=0
elseif (bit012=001) //Clear
    geotiff_value=1
elseif (bit012=010) //Partly Cloudy
    geotiff_value=2
elseif (bit012=011) //Water Cloud
    geotiff_value=3
elseif (bit012=100) //Supercooled Water/Mixed
    geotiff_value=4
elseif (bit012=101) //Opaque Ice Cloud
    geotiff_value=5
elseif (bit012=110) //Cirrus Cloud
    geotiff_value=6
elseif (bit012=111) //Cloud Overlap
    geotiff_value=7
endif

Pseudo-code to convert GeoTIFF values to actual parameter flags (units: dimensionless):

if (geotiff_value=1)
    parameterflag=CLEAR
elseif (geotiff_value=2)
    parameterflag=PARTLY_CLOUDY
elseif (geotiff_value=3)
    parameterflag=WATER_CLOUD
elseif (geotiff_value=4)
    parameterflag=MIXED_CLOUD
elseif (geotiff_value=5
parameterflag=ICE_CLOUD
elseif (geotiff_value=6
    parameterflag=CIRRUS_CLOUD
elseif (geotiff_value=7)
    parameterflag=CLOUD_OVERLAP
elseif (geotiff_value=0)
    parameterflag=NO_RETRIEVAL
endif

V14. VIIRS Aerosol Optical Thickness

HDF SDS: /All_Data/VIIRS-Aeros-Opt-Thick-IP_All/faot550 (in IVAOT product generated by Aerosol_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 0.0 to 5.0 are scaled linearly to 1-255 in GeoTIFF output. Fill values (-999) in SDS are set to 0 in geotiff.

    if hdf_value = -999
        geotiff_value=0
    else
        geotiff_value=1+round((254/5.0)*hdf_value) //scale from 1 to 255
        if (geotiff_value<1)
            geotiff_value=1
        endif
        if (geotiff_value>255)
            geotiff_value=255
        endif
    endif

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: dimensionless; range: 0-5):

    if geotiff_value>0
        hdf_value=(geotiff_value-1)*5.0/254 //scale 1-255 to 0-5.0
        parameter_value=hdf_value
    else //geotiff_value=0
        hdf_value=-999
        parameter_value=NO_RETRIEVAL
    end

V15. VIIRS Aerosol Particle Size

HDF SDS: /All_Data/VIIRS-Aeros-Opt-Thick-IP_All/angexp (in IVAOT product generated by Aerosol_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from
0.0 to 3.0 are scaled linearly to 1-255 in GeoTIFF output. Fill values (-999) in SDS are set to 0 in geotiff.

```python
if hdf_value = -999
 geotiff_value=0
else
 geotiff_value=1+round((254/3.0)*hdf_value) //scale from 1 to 255
 if(geotiff_value<1)
 geotiff_value=1
 endif
 if(geotiff_value>255)
 geotiff_value=255
 endif
endif
```

**Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: dimensionless; range: 0-3.0):**

```python
if geotiff_value>0
 hdf_value=(geotiff_value-1)*3.0/254 //scale 1-255 to 0-3.0
 parameter_value=hdf_value
else //geotiff_value=0
 hdf_value=-999
 parameter_value=NO_RETRIEVAL
end
```

**V16. VIIRS Suspended Matter**

**HDF SDS: /All_Data/VIIRS-SusMat-EDR_All/SuspendedMatterType (from VSUMO product generated by AEROSOL_SPA)**

**Scaling used to convert HDF SDS values to GeoTIFF values:**

```python
if hdf_value >= 249 and hdf_value<=255
 geotiff_value=0
else
 geotiff_value=1+hdf_value
 if(geotiff_value<1)
 geotiff_value=1
 endif
 if(geotiff_value>255)
 geotiff_value=255
 endif
endif
```

**Pseudo-code to convert GeoTIFF values to actual parameter flags (units: dimensionless):**
if (geotiff_value>0)
    hdf_value=geotiff_value-1
elseif (geotiff_value=0)
    hdf_value=NO_VALUE
endif

**V17. VIIRS Cloud Top Temperature**

HDF SDS: /All_Data/VIIRS-INWCTT-IP_All/ctt (in IVIWT product generated by COP_SPA)

**Scaling used to convert HDF SDS values to GeoTIFF values:** HDF SDS data from 180.0 to 300.0 (equivalent to 180K-300K) are scaled linearly to 1-255 in GeoTIFF output. Fill values (~999) are set to 0.

if hdf_value>=-1000 and hdf_value<=-999
    geotiff_value=0
else
    geotiff_value=1+round((254/120)*(hdf_value-180)) //scale from 1 to 255
    if(geotiff_value<1)
        geotiff_value=1
    endif
    if(geotiff_value>255)
        geotiff_value=255
    endif
endif

**Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: K; range: 180K to 300K):**

if geotiff_value>0
    hdf_value=([(geotiff_value-1)*120/254]+180) //scale 1-255 to 180 to 300
    parameter_value=hdf_value
else //geotiff_value=0
    hdf_value=FILL_VALUE
    parameter_value=NO_RETRIEVAL
end

**V18 VIIRS Cloud Optical Thickness**

HDF SDS: /All_Data/VIIRS-Cd-Opt-Prop-IP_All/cot (in IVCOP product generated by COP_SPA)

**Scaling used to convert HDF SDS values to GeoTIFF values:** HDF SDS data from
0.0 to 40.0 are scaled linearly to 1-255 in GeoTIFF output. Fill values (-999) in SDS are set to 0 in geotiff.

```plaintext
if hdf_value >=-1000 and hdf_value<=-999
 geotiff_value=0
else
 geotiff_value=1+round((254/40.0)*hdf_value) //scale from 1 to 255
 if(geotiff_value<1)
 geotiff_value=1
 endif
 if(geotiff_value>255)
 geotiff_value=255
 endif
endif
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: dimensionless; range: 0-40.0):

```plaintext
if geotiff_value>0
 hdf_value=(geotiff_value-1)*40.0/254 //scale 1-255 to 0-40.0
 parameter_value=hdf_value
else //geotiff_value=0
 hdf_value=-999
 parameter_value=NO_RETRIEVAL
end
```

**V19. VIIRS Effective Particle Size**

HDF SDS: /All_Data/VIIRS-Cd-Opt-Prop-IP_All/eps (in IVCOP product generated by COP_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 0.0 to 40.0 (microns) are scaled linearly to 1-255 in GeoTIFF output. Fill values (-999) in SDS are set to 0 in geotiff.

```plaintext
if hdf_value >=-1000 and hdf_value<=-999
 geotiff_value=0
else
 geotiff_value=1+round((254/40.0)*hdf_value) //scale from 1 to 255
 if(geotiff_value<1)
 geotiff_value=1
 endif
 if(geotiff_value>255)
 geotiff_value=255
 endif
endif
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: dimensionless; range: 0-40.0):
values (units: microns; range: 0-40.0):

if geotiff_value>0
    hdf_value=(geotiff_value-1)*40.0/254  //scale 1-255 to 0-40.0
    parameter_value=hdf_value
else //geotiff_value=0
    hdf_value=-999
    parameter_value=NO_RETRIEVAL
end

V20. VIIRS Snow Binary Map

HDF SDS: /All_Data/VIIRS-SCD-BINARY-SNOW-MAP-EDR_All/SnowCoverBinaryMap (from VSCMO product generated by SNOWCOVER_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values:

if hdf_value >= 249 and hdf_value<=255
    geotiff_value=0
elseif QF1_VIIRSSCD_BINARYSNOWMAPEDR is 'BAD' or 'NO-RETRIEVAL'
    geotiff_value=0
else
    geotiff_value=1+hdf_value
    if(geotiff_value<1)
        geotiff_value=1
    endif
    if(geotiff_value>255)
        geotiff_value=255
    endif
end

Pseudo-code to convert GeoTIFF values to actual parameter flags (units: dimensionless):

if (geotiff_value>0)
    hdf_value=geotiff_value-1
else (geotiff_value=0)
    hdf_value=NO_VALUE
endif

V21. VIIRS Snow Fraction

HDF SDS: /All_Data/VIIRS-SCD-BINARY-SNOW-FRAC-SDR_All/SnowCoverFraction (generated by SnowCov_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 0
to 65527 (equivalent to Snow Fraction values 0.0 to 1.0) are scaled linearly to 1-255 in GeoTIFF output. Fill values (65528 to 65535) are set to 0.

```plaintext
if hdf_value >= 65528 and hdf_value<=65535
 geotiff_value=0
else
 geotiff_value=1+round((254/65527)*hdf_value) //scale from 1 to 255
 if(geotiff_value<1)
 geotiff_value=1
 endif
 if(geotiff_value>255)
 geotiff_value=255
 endif
endif
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: dimensionless; range: 0.0 to 1.0):

```plaintext
if geotiff_value>0
 hdf_value=((geotiff_value-1)*65527/254) //scale 1-255 to 0-65527
 parameter_value=hdf_value*0.00001526088 //apply scaling and offset factors
else //geotiff_value=0
 hdf_value=65535
 parameter_value=NO_RETRIEVAL
end
```

**V22. VIIRS Land Surface Reflectance True Color**

VIIRS land surface reflectances in bands M5, M4 and M3 generated by SurfRefl SPA are used to create the VIIRS surface reflectance true color images. The scalings used were inspired by Gumley, Descoitres and Schmaltz (2007), "Creating Reprojected True Color MODIS Images: A Tutorial."

**V23. VIIRS NDVI**

**HDF SDS:** /All_Data/VIIRS-VI_EDR_All/TOA_NDVI (generated by VegIndex SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 29488 to 65527 (equivalent to NDVI values -0.1 to 1.0) are scaled linearly to 1-255 in GeoTIFF output. Fill values (65528 to 65535) are set to 0.

```plaintext
if hdf_value >=65528 and hdf_value<=65535
 geotiff_value=0
elseif pixel has CLOUD, WATER or FILL (identified using VIIRS-AF HDF product)
 geotiff_value=0
else
 geotiff_value=1+round((254/36039)*(hdf_value-29488)) //scale from 1 to 255
 if(geotiff_value<1)
 geotiff_value=1
 endif
```
Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: dimensionless; range: -0.1 to 1.0):

```c
if(geotiff_value>0)
 hdf_value=[(geotiff_value-1)*36039/254]+29488 //scale 1-255 to 29428-65527
 parameter_value=hdf_value*0.00003052177-1 //apply scaling and offset factors
else //geotiff_value=0
 hdf_value=65535
 parameter_value=NO_RETRIEVAL
end
```

**V24. VIIRS EVI**

**HDF SDS: /All_Data/VIIRS-VI_EDR_All/TOC_EVI (generated by VegIndex_SPA)**

**Scaling used to convert HDF SDS values to GeoTIFF values:** HDF SDS data from 11795 to 26211 (equivalent to EVI values -0.1 to 1.0) are scaled linearly to 1-255 in GeoTIFF output. Fill values (65528 to 65535) are set to 0.

```c
if hdf_value >=65528 and hdf_value<=65535
 geotiff_value=0
else if pixel has CLOUD, WATER or FILL (identified using VIIRS-AF HDF product)
 geotiff_value=0
else
 geotiff_value=1+round((254/14416)*(hdf_value-11795)) //scale from 1 to 255
 if(geotiff_value<1)
 geotiff_value=1
 endif
 if(geotiff_value>255)
 geotiff_value=255
 endif
end
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: dimensionless; range: -0.1 to 1.0):

```c
if geotiff_value>0
 hdf_value=[(geotiff_value-1)*14416/254]+11795 //scale 1-255 to 11795 to 26211
 parameter_value=hdf_value*0.0007630442-1 //apply scaling and offset factors
else //geotiff_value=0
 hdf_value=65535
 parameter_value=NO_RETRIEVAL
end
```
V25. VIIRS LST

**HDF SDS:** /All_Data/VIIRS-LST-EDR_All/LandSurfaceTemperature (generated by LST_SPA)

**Scaling used to convert HDF SDS values to GeoTIFF values:** HDF SDS data from 18385 to 61598 (equivalent to LST values 230K to 340K) are scaled linearly to 1-255 in GeoTIFF output. Fill values (65528 to 65535) are set to 0.

```plaintext
if hdf_value >=65528 and hdf_value<=65535
gotiff_value=0
elseif pixel has CLOUD, WATER or FILL (identified using VIIRS-AF HDF product)
gotiff_value=0
else
gotiff_value=1+round((254/43213)*(hdf_value-18385)) //scale from 1 to 255
 if(geotiff_value<1)
 gotiff_value=1
 endif
 if(geotiff_value>255)
 gotiff_value=255
 endif
endif
```

**Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: Kelvin; range: 230K to 340K):**

```plaintext
if geotiff_value>0
 hdf_value=[(geotiff_value-1)*43213/254]+18385 //scale 1-255 to 18385 to 61598
 parameter_value=hdf_value*0.0025455155+183.2 //apply scaling and offset factors
else //geotiff_value=0
 hdf_value=65535
 parameter_value=NO_RETRIEVAL
end
```

V26. VIIRS L2GEN SST

**HDF SDS:** sst (generated by L2GEN_SPA)

**Scaling used to convert HDF SDS values to GeoTIFF values:**
HDF SDS data from -400 to 9000 (equivalent to -2°C to 45°C) are scaled linearly to 1-255 in GeoTIFF output. Fill values (-32767) are set to 0.
if hdf_value = -32767
    geotiff_value=0
elseif qual_sst>=3 (identified using qual_sst sds)
    geotiff_value=0
else
    geotiff_value=1+round((254/9400)*(hdf_value+400)) //scale from 1 to 255
    if(geotiff_value<1)
        geotiff_value=1
    endif
    if(geotiff_value>255)
        geotiff_value=255
    endif
endif

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: °C; range: -2°C to 45°C):

if geotiff_value>0
    hdf_value=([geotiff_value-1]*9400/254)-400 //scale 1-255 to -400 to 9000
    parameter_value=hdf_value*0.005 //apply scaling and offset factors as specified in the HDF SDS
else //geotiff_value=0
    hdf_value=-32767
    parameter_value=NO_RETRIEVAL
end

V27. VIIRS L2GEN Chlorophyll-a Concentration

HDF SDS: chlor_a (generated by L2GEN_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values:

if(hdf_value=-32767 or l2flag = Chl_warn or l2flag=Chl_fail)
    geotiff_value=0
else
    if(hdf_value<0.01)
        hdf_value=0.01
    endif
    if(hdf_value>100)
        hdf_value=100
    endif
    geotiff_value= round(128+(63.5*(log10(hdf_value))
end

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: mg/m^3; range: 0.01 to 100):

if (geotiff_value=0)
    hdf_value=-1
    parameter_value=NO_RETRIEVAL
else
hdf_value=10*[(geotiff_value-128)/63.5]
parameter_value=hdf_value
end

V28-V38/V44-V46. VIIRS I/M SDR Reflectances

HDF SDS: /All_Data/VIIRS-MX-SDR_All/Reflectance (in SVMXX product; XX=01-11); All_Data/VIIRS-MX-SDR_All/Reflectance (in SVMXX product; XX=01-11)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data between 0 and 40954 (equivalent to 0-1 reflectance) are scaled linearly to 1-255 in GeoTIFF output. Fill values (65528 to 65535) are set to 0.

if hdf_value == Fill_Value
    geotiff_value=0
else
    geotiff_value=1+round((254/(40954))*(hdf_value)) //scale from 1 to 255
    if(geotiff_value<1)
        geotiff_value=1
    endif
    if(geotiff_value>255)
        geotiff_value=255
    endif
endif

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (unitless; range: 0 to 1):

if geotiff_value>0
    hdf_value=((geotiff_value-1)*(40954))/254 //scale 1-255 to 0-40954
    parameter_value=hdf_value*0.000024417415 //apply scaling and offset factors as specified in the HDF SDS
else //geotiff_value=0
    hdf_value=FILL_VALUE
    parameter_value=NO_RETRIEVAL
end

V39-V43/V47-V48. VIIRS I/M SDR Brightness Temperature

HDF SDS: /All_Data/VIIRS-MX-SDR_All/BrightnessTemperature (in SVMXX product; XX=12-16); All_Data/VIIRS-MX-SDR_All/BrightnessTemperature (in SVMXX product; XX=04-05)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data in the following ranges (equivalent to 180K-320K) for each VIIRS emissive band:
I4: -11539 to 46157; I5: 8547 to 48433; M12: -9134 to 46465; M13: 180 to 320; M14:
16047 to 53491; M15: 16746 to 50733; M16: 18084 to 50965; are scaled linearly to 1-255 in GeoTIFF output. Fill values (65528 to 65535 for I4, I5, M12, M14, M15 and M16 and -999 for M13) are set to 0.

if hdf_value == Fill_Value
    geotiff_value=0
else
    geotiff_value=1+round((254/(upper_bound_sds-lower_bound_sds))*(hdf_value-lower_bound_sds)) //scale from 1 to 255
    if(geotiff_value<1)
        geotiff_value=1
    endif
    if(geotiff_value>255)
        geotiff_value=255
    endif
endif

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: K; range: 180K to 320K):

if geotiff_value>0
    hdf_value=((geotiff_value-1)*(upper_bound_sds-lower_bound_sds)/254)+lower_bound_sds
    //scale 1-255 to lower_bound_sds to upper_bound_sds
    parameter_value=hdf_value*scale+offset  //apply scaling and offset factors as specified in the HDF SDS
else//geotiff_value=0
    parameter_value=NO_RETRIEVAL
end

O1. OMPS Ultraviolet Aerosol Index

HDF SDS: /ScienceData/UVAerosolIndex (in OMPS Total Column Total Ozone product generated by OMPSnadir_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 1.0 to 3.0 (equivalent to aerosol index of 1.0 to 3.0) are scaled linearly to 1-255 in GeoTIFF output. Fill values (-9999 to -3000) are set to 0.

if hdf_value >= -9999 and hdf_value<=-3000
    geotiff_value=0
else
    geotiff_value=1+round((254/2.0)*(hdf_value-1.0)) //scale from 1 to 255
    if(geotiff_value<1)
        geotiff_value=1
    endif
    if(geotiff_value>255)
Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: dimensionless; range: 1.0 to 3.0):

if geotiff_value>0
    hdf_value=\[(geotiff_value-1)*2.0/254\]+1.0 //scale 1-255 to 1.0 to 3.0
    parameter_value=hdf_value
else //geotiff_value=0
    hdf_value=FILL_VALUE
    parameter_value=NO_RETRIEVAL
end

O2. OMPS Total Column Ozone

HDF SDS: /ScienceData/ColumnAmountO3 (in OMPS Total Column Total Ozone product generated by OMPSnadir_SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 200.0 to 500.0 (equivalent to Total Ozone of 200.0 D.U. to 500.0 D.U.) are scaled linearly to 1-255 in GeoTIFF output. Fill values (-9999 to 50) are set to 0.

if hdf_value >= -9999 and hdf_value<=50
    geotiff_value=0
else
    geotiff_value=1+round((254/300)*(hdf_value-200)) //scale from 1 to 255
    if(geotiff_value<1)
        geotiff_value=1
    endif
    if(geotiff_value>255)
        geotiff_value=255
    endif
endif

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: D.U.; range: 200.0 to 500.0):

if geotiff_value>0
    hdf_value=\[(geotiff_value-1)*300.0/254\]+200.0 //scale 1-255 to 200-500
    parameter_value=hdf_value
else //geotiff_value=0
    hdf_value=FILL_VALUE
    parameter_value=NO_RETRIEVAL
end
O3. OMPS Reflectivity at 331nm

**HDF SDS**: /ScienceData/Reflectivity331 (Total Column Total Ozone product generated by OMPSnadir _SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 0.0 to 1.0 (equivalent to Reflectivity of 0.0 to 1.0) are scaled linearly to 1-255 in GeoTIFF output. Fill values (-9999 to -1) are set to 0.

```python
if hdf_value >= -9999 and hdf_value<= -1.0
 geotiff_value=0
else
 geotiff_value=1+round((254/1.0)*(hdf_value)) //scale from 1 to 255
 if(geotiff_value<1)
 geotiff_value=1
 endif
 if(geotiff_value>255)
 geotiff_value=255
 endif
endif
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: dimensionless; range: 0.0 to 1.0):

```python
if geotiff_value>0
 hdf_value=([geotiff_value-1]*1.0/254) //scale 1-255 to 0.0-1.0
 parameter_value=hdf_value
else //geotiff_value=0
 hdf_value= Fill_VALUE
 parameter_value=NO_RETRIEVAL
end
```

O4. OMPS Total Column SO₂

**HDF SDS**: /HDFEOS/SWATHS/OMPS Column Amount SO₂/Data Fields/ColumnAmountSO₂_TRM (in OMPS SO₂ product generated by OMPSnadir _SPA)

Scaling used to convert HDF SDS values to GeoTIFF values: HDF SDS data from 0.0 to 2.0 (equivalent to Total Ozone of 0.0 D.U. to 2.0 D.U.) are scaled linearly to 1-255 in GeoTIFF output. Fill values (-9999 to -10) are set to 0.

```python
if hdf_value >= -9999 and hdf_value<= -10
 geotiff_value=0
```
else
    geotiff_value=1+round((254/2.0)*(hdf_value)) //scale from 1 to 255
    if(geotiff_value<1)
        geotiff_value=1
    endif
    if(geotiff_value>255)
        geotiff_value=255
    endif
endif

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: D.U.; range: 0.0 to 2.0):

    if geotiff_value>0
        hdf_value=[(geotiff_value-1)*2.0/254]/scale 1-255 to 0.0-2.0
        parameter_value=hdf_value
    else //geotiff_value=0
        hdf_value=FILL_VALUE
        parameter_value=NO_RETRIEVAL
    end

C1/C2/C3. CrIS SDR Brightness Temperature

HDF SDS: /All_Data/CrIS-SDR_All/ES_RealXX (XX=SW, MW, LW in SCRIS SDR product)

Scaling used to convert HDF SDS values to GeoTIFF values: CrIS SDR data in the latter datasets are first preprocessed into Brightness Temperature intermediate products containing average brightness temperature for the following spectral ranges: 900-905 cm\(^{-1}\) (Longwave); 1598-1602 cm\(^{-1}\) (Mediumwave); 2425-2430 cm\(^{-1}\) (Shortwave). These Brightness temperatures in the following ranges for each spectral range: Longwave: 205K to 305K; Mediumwave: 205K-265K; Shortwave: 225K-305K are scaled linearly to 1-255 in GeoTIFF output. Fill values (-999) are set to 0.

    if hdf_value== Fill_Value
        geotiff_value=0
    else
        geotiff_value=1+round((254/(upper_bound_brightTemp-lower_bound_brightTemp))*(brightTemp-lower_bound_brightTemp)) //scale from 1 to 255
        if(geotiff_value<1)
            geotiff_value=1
        endif
        if(geotiff_value>255)
            geotiff_value=255
        endif
    endif
Pseudo-code to convert GeoTIFF values to Brightness Temperature values (units: K; range: as described above for each channel):

```
if geotiff_value>0
 //scale 1-255 to parameter values
 brightTemp=([(geotiff_value-1)*(upper_bound_brightTemp-
 lower_bound_brightTemp)/254]+lower_bound_brightTemp
else //geotiff_value=0
 brightTemp=NO_RETRIEVAL
end
```

**A1-A22. ATMS SDR Brightness Temperature**

**HDF SDS: /All_Data/ATMS-SDR_All/BrightnessTemperature (in SATMS SDR product)**

*Scaling used to convert HDF SDS values to GeoTIFF values:* HDF SDS data in the following ranges for each ATMS channel: Channel 1, 2, 3, 4, 16, 17, 18: 39713 to 59570 (equivalent to 200K-300K); Channel 5, 19, 20, 21, 22: 39713 to 55599 (equivalent to 200K-280K); Channel 6: 43685 to 51627 (equivalent to 220K to 260K); Channel 7: 41699 to 47656 (equivalent to 210K to 240K); Channel 8, 9, 10, 11: 41699 to 45670 (equivalent to 210K to 230K); Channel 12, 13: 41699 to 49642 (equivalent to 210K to 250K); Channel 14, 15: 41699 to 55599 (equivalent to 210K to 280K); are scaled linearly to 1-255 in GeoTIFF output. Fill values (65528 to 65535) are set to 0.

```
if hdf_value == Fill_Value
 geotiff_value=0
else
 geotiff_value=1+round((254/(upper_bound_sds-lower_bound_sds))*(hdf_value-
 lower_bound_sds)) //scale from 1 to 255
 if(geotiff_value<1)
 geotiff_value=1
 endif
 if(geotiff_value>255)
 geotiff_value=255
 endif
endif
```

Pseudo-code to convert GeoTIFF values to HDF SDS values/actual parameter values (units: K; range: as described above for each channel):

```
if geotiff_value>0
 //scale 1-255 to lower_bound_sds to upper_bound_sds
 hdf_value=([(geotiff_value-1)*(upper_bound_sds-lower_bound_sds)/254]+lower_bound_sds
```
//apply scaling and offset factors as specified in the HDF SDS
  parameter_value=hdf_value*0.005036092
else //geotiff_value=0
  hdf_value=FILL_VALUE
  parameter_value=NO_RETRIEVAL
end